该文运用锥上的不动点定理研究非线性二阶常微分方程无穷多点边值问题u″+α(t)f(u)=0,t∈(0,1), u(0)=0,u(1)=sum from i=1 to∞(α_iu(ξ_i)正解的存在性。其中ξ_i∈(0,1),α_i∈[0,∞),且满足sum from i=1 to∞(α_iξ_i)<1.a∈C...该文运用锥上的不动点定理研究非线性二阶常微分方程无穷多点边值问题u″+α(t)f(u)=0,t∈(0,1), u(0)=0,u(1)=sum from i=1 to∞(α_iu(ξ_i)正解的存在性。其中ξ_i∈(0,1),α_i∈[0,∞),且满足sum from i=1 to∞(α_iξ_i)<1.a∈C([0,1],[0,∞)),f∈C([0,∞),[0,∞)).展开更多
In this paper, the authors study the existence of positive solution of the following BVP {1/p(t)(P(t)x′)′+f(t,x(t),p(t)x′(t))=0,o〈t〈+∞ αx(0)-βlimt→0p(t)x′(t)=0,γ limt→+∞x(t)+δl...In this paper, the authors study the existence of positive solution of the following BVP {1/p(t)(P(t)x′)′+f(t,x(t),p(t)x′(t))=0,o〈t〈+∞ αx(0)-βlimt→0p(t)x′(t)=0,γ limt→+∞x(t)+δlimt→+∞p(t)x′(t)=0 on the semi-infinite interval. By considering characterization of the nonlinearity, they obtain some new existence results.展开更多
文摘该文运用锥上的不动点定理研究非线性二阶常微分方程无穷多点边值问题u″+α(t)f(u)=0,t∈(0,1), u(0)=0,u(1)=sum from i=1 to∞(α_iu(ξ_i)正解的存在性。其中ξ_i∈(0,1),α_i∈[0,∞),且满足sum from i=1 to∞(α_iξ_i)<1.a∈C([0,1],[0,∞)),f∈C([0,∞),[0,∞)).
基金Supported by the Natural Scientific Fund of Zhejiang Province(Y604127)Supported by the Educational Scientific Fund of Zhejiang Province(20030594)
文摘In this paper, the authors study the existence of positive solution of the following BVP {1/p(t)(P(t)x′)′+f(t,x(t),p(t)x′(t))=0,o〈t〈+∞ αx(0)-βlimt→0p(t)x′(t)=0,γ limt→+∞x(t)+δlimt→+∞p(t)x′(t)=0 on the semi-infinite interval. By considering characterization of the nonlinearity, they obtain some new existence results.