期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于无监督迁移成分分析和深度信念网络的轴承故障诊断方法 被引量:11
1
作者 谭俊杰 杨先勇 +1 位作者 徐增丙 王志刚 《武汉科技大学学报》 CAS 北大核心 2019年第6期456-462,共7页
针对轴承故障样本少导致识别精度低的问题,提出一种基于无监督迁移成分分析(unsupervised transfer component analysis,UTCA)和深度信念网络(deep belief network,DBN)的故障诊断方法。首先利用UTCA的核函数将不同工况样本特征映射到... 针对轴承故障样本少导致识别精度低的问题,提出一种基于无监督迁移成分分析(unsupervised transfer component analysis,UTCA)和深度信念网络(deep belief network,DBN)的故障诊断方法。首先利用UTCA的核函数将不同工况样本特征映射到一个共享再生核Hilbert空间中,使得源域和目标域样本集更加相似,并通过最大均值偏差嵌入法(maximum mean discrepancy embedding,MMDE)判断能够迁移的源域数据,将源域样本迁移到目标域中,为深度学习提供充足的训练样本,解决了实际故障样本较少的问题;然后采用DBN模型对源域样本进行训练,再对映射后无标记的目标域样本进行故障诊断分析。利用不同工况下的滚动轴承实验数据进行算法验证,结果表明,与普通DBN、SVM、BPNN以及传统机器学习-UTCA融合方法相比,本文方法对滚动轴承故障的诊断精度更高。 展开更多
关键词 故障诊断 滚动轴承 无监督迁移成分分析 深度信念网络 迁移学习 深度学习
在线阅读 下载PDF
基于无监督迁移成分分析和支持向量机的故障分类方法 被引量:3
2
作者 蒋兆 马义中 《计算机集成制造系统》 EI CSCD 北大核心 2023年第9期3066-3073,共8页
针对因源域和目标域数据存在分布差异及故障样本缺乏影响故障分类准确度的问题,构建了基于无监督迁移成分分析—支持向量机(UTCA-SVM)的故障分类模型。首先,将不同工况的样本特征映射到Hilbert核空间;然后,通过最大均值差异(MMD)来度量... 针对因源域和目标域数据存在分布差异及故障样本缺乏影响故障分类准确度的问题,构建了基于无监督迁移成分分析—支持向量机(UTCA-SVM)的故障分类模型。首先,将不同工况的样本特征映射到Hilbert核空间;然后,通过最大均值差异(MMD)来度量迁移的源域样本数据,实现从源域到目标域的跨域特征信息迁移;最后,通过实验对所提故障分类方法进行验证。实验结果表明:所提方法与主成分分析—支持向量机分类模型(PCA-SVM)和SVM分类模型相比,能够减少域分布差异以更准确的进行样本数据分类,进而准确地检测出滚动轴承的故障状态。 展开更多
关键词 滚动轴承 无监督迁移成分分析 支持向量机 最大均值差异 故障检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部