期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于无监督判别投影的滚动轴承故障诊断 被引量:5
1
作者 江丽 郭顺生 《中国机械工程》 EI CAS CSCD 北大核心 2016年第16期2202-2206,共5页
针对滚动轴承故障样本不平衡和故障特征存在冗余性问题,提出了基于无监督判别投影(UDP)的滚动轴承故障诊断方法。该方法首先从时域和时频域提取多个特征参数,从而构造一个原始的高维特征集,随后运用UDP算法从该特征集中提取最敏感的低... 针对滚动轴承故障样本不平衡和故障特征存在冗余性问题,提出了基于无监督判别投影(UDP)的滚动轴承故障诊断方法。该方法首先从时域和时频域提取多个特征参数,从而构造一个原始的高维特征集,随后运用UDP算法从该特征集中提取最敏感的低维流形特征,最后利用K-近邻分类器识别出滚动轴承的运行状态。将该方法分别应用于轴承故障类型和内圈故障严重性的识别,并与传统方法进行了比较,验证了该方法的可行性和优越性。 展开更多
关键词 故障诊断 特征提取 流形学习 无监督判别投影
在线阅读 下载PDF
人脸识别中适合于小样本情况下的监督化拉普拉斯判别分析 被引量:8
2
作者 楼宋江 张国印 +1 位作者 潘海为 王庆军 《计算机研究与发展》 EI CSCD 北大核心 2012年第8期1730-1737,共8页
提取有效特征对高维数据的模式分类起着关键的作用.无监督判别投影,通过最大化非局部散度和局部散度之比,在数据降维和特征提取上表现出较好的性能,但是它是一种非监督学习算法,并且存在小样本问题.针对这些问题,提出了监督化拉普拉斯... 提取有效特征对高维数据的模式分类起着关键的作用.无监督判别投影,通过最大化非局部散度和局部散度之比,在数据降维和特征提取上表现出较好的性能,但是它是一种非监督学习算法,并且存在小样本问题.针对这些问题,提出了监督化拉普拉斯判别分析,算法在考虑非局部散度和局部散度时考虑了样本的类别信息;通过丢弃总体拉普拉斯散度矩阵的零空间,并将类内拉普拉斯散度矩阵投影到总体拉普拉斯散度矩阵的主空间中,然后在该空间中进行特征问题的求解,从而避免了小样本问题.通过理论分析,该算法没有任何判别信息损失,同时在计算上效率也较高.在人脸识别上的实验验证了算法的正确性和有效性. 展开更多
关键词 特征提取 人脸识别 保局算法 无监督判别投影 监督化拉普拉斯判别分析 小样本问题
在线阅读 下载PDF
一种半监督流形学习的人脸识别方法 被引量:3
3
作者 汪炼 王年 +2 位作者 沈玲 王继 庄振华 《计算机工程与应用》 CSCD 北大核心 2011年第17期192-195,共4页
针对传统线性降维方法忽略数据局部结构特性的问题,提出了一种基于半监督流形学习的方法。针对人脸识别采用图像欧式距离来选择各样本点的K近邻,由此得到修改后无监督判别投影中的邻接矩阵,在传统的无监督判别投影中,融入类标签信息获... 针对传统线性降维方法忽略数据局部结构特性的问题,提出了一种基于半监督流形学习的方法。针对人脸识别采用图像欧式距离来选择各样本点的K近邻,由此得到修改后无监督判别投影中的邻接矩阵,在传统的无监督判别投影中,融入类标签信息获得几何最优投影。通过在人脸库上的大量比较实验,验证了该方法的准确性和有效性。 展开更多
关键词 无监督判别投影 非参数鉴别分析 图像欧式距离 流形学习 监督学习 人脸识别
在线阅读 下载PDF
基于极小准则的完备正交判别局部保持算法 被引量:1
4
作者 林玉娥 李敬兆 +1 位作者 梁兴柱 林玉荣 《光电工程》 CAS CSCD 北大核心 2011年第3期145-150,共6页
以无监督判别投影算法为理论基础,提出了一种基于极小准则的完备正交判别局部保持投影算法。算法首先根据同类样本的空间信息重新定义了类内局部保持散度矩阵与类间局部保持散度矩阵,然后借鉴无监督判别投影算法的目标函数,推导出一个... 以无监督判别投影算法为理论基础,提出了一种基于极小准则的完备正交判别局部保持投影算法。算法首先根据同类样本的空间信息重新定义了类内局部保持散度矩阵与类间局部保持散度矩阵,然后借鉴无监督判别投影算法的目标函数,推导出一个基于极小准则的目标函数,该目标函数通过投影到总体散度矩阵的非零空间中有效地解决小样本问题,最后给出了该算法基于QR分解的正交投影矩阵的求解方法。人脸库上的实验结果表明了所提方法的有效性。 展开更多
关键词 完备正交判别局部保持投影算法 散度矩阵 无监督判别投影算法 目标函数 非零空间
在线阅读 下载PDF
基于仿生学的不相关局部保持鉴别分析 被引量:4
5
作者 宁欣 李卫军 +1 位作者 李浩光 刘文杰 《计算机研究与发展》 EI CSCD 北大核心 2016年第11期2623-2629,共7页
由于形象思维方式是人类的一种本质思维方式,人类通过各种感官来认知事物的规律性,进而提取出具有代表性的特征,因此通过形象思维的方法来提取事物的本质特征符合人类认知事物的规律.针对人脸识别中特征提取问题,该算法以形象认知规律... 由于形象思维方式是人类的一种本质思维方式,人类通过各种感官来认知事物的规律性,进而提取出具有代表性的特征,因此通过形象思维的方法来提取事物的本质特征符合人类认知事物的规律.针对人脸识别中特征提取问题,该算法以形象认知规律与无监督判别投影为理论基础,提出了一种仿生不相关空间局部保持鉴别分析(biomimetic uncorrelated locality preserving discriminant analysis,BULPDA)算法.算法首先根据人类形象认知的特性构建了一种新的相似系数表示方法;然后结合不相关空间概念,确保矢量空间具有不相关性;最后给出了基于奇异值分解的矢量空间求解方法,形成了一种特征提取新思路.在标准数据库上的实验结果表明,新算法优于传统的特征提取方法和其他改进的局部保持投影方法. 展开更多
关键词 无监督判别投影 形象认知 不相关空间 特征提取 奇异值分解
在线阅读 下载PDF
基于组稀疏的参数自适应学习UDP算法 被引量:2
6
作者 冯重锴 李波 《计算机工程与设计》 北大核心 2019年第8期2190-2195,共6页
传统UDP算法的参数选择是一个经典问题,至今仍没有一种有效的方法从根本上解决这个问题。针对复杂的参数选择,提出一种基于组稀疏的参数自适应学习UDP算法(SUDP)。使用组稀疏来描述样本点的几何结构,自适应地构造样本点的近邻图,避免传... 传统UDP算法的参数选择是一个经典问题,至今仍没有一种有效的方法从根本上解决这个问题。针对复杂的参数选择,提出一种基于组稀疏的参数自适应学习UDP算法(SUDP)。使用组稀疏来描述样本点的几何结构,自适应地构造样本点的近邻图,避免传统UDP算法中使用K-NN算法带来的弊端。由于稀疏表示带有天然判别信息的优势,SUDP算法比传统的UDP算法有着更强的判别能力。在6个广泛使用的人脸数据集上进行的实验,实验结果表明了SUDP算法的有效性和稳定性。 展开更多
关键词 流形 人脸识别 无监督判别投影 组稀疏 无参数 自适应 L2 1范数
在线阅读 下载PDF
分类先验特征选择算法在代谢组学数据变量筛选中的应用 被引量:1
7
作者 王娅妮 杜丽晶 +1 位作者 郭拓 肖雪 《分析测试学报》 CAS CSCD 北大核心 2023年第4期423-431,共9页
该文提出了基于无监督判别投影特征选择的支持向量机方法(UDPFS-SVM)用于标志物筛选。UDPFS-SVM首先通过无监督判别投影算法(UDPFS)引入分类先验信息、添加正则化与惩罚函数等约束自适应地获得具有稀疏性的判别投影矩阵,然后根据获得的... 该文提出了基于无监督判别投影特征选择的支持向量机方法(UDPFS-SVM)用于标志物筛选。UDPFS-SVM首先通过无监督判别投影算法(UDPFS)引入分类先验信息、添加正则化与惩罚函数等约束自适应地获得具有稀疏性的判别投影矩阵,然后根据获得的矩阵求得相应低维代谢矩阵,最后建立支持向量机(SVM)分类模型寻找生物标志物。所提出的方法能够同时进行模糊学习与稀疏学习,并可合理利用变量之间的依赖关系。通过UDPFS-SVM与偏最小二乘判别分析(PLS-DA)方法对高脂血症大鼠血浆代谢组学数据进行变量筛选,并采用方差分析、ROC曲线、线性判别分析(LDA)对筛选得到的生物标志物进行评价。结果表明,两种方法均发现8个生物标志物。方差分析显示UDPFS-SVM方法获得的生物标志物均具有显著性差异,且显著性差异值均大于PLS-DA;ROC结果显示UDPFS-SVM结果为1.00,比PLS-DA结果高0.05;LDA显示UDPFS-SVM获得的生物标志物在高脂血症样本中可以更好地消除组内代谢差异,区分组间代谢差异,说明UDPFS-SVM方法在高脂血症生物标志物发现上优于PLS-DA,为生物标志物的发现提供了一种新思路。 展开更多
关键词 变量筛选 无监督判别投影 分类先验信息 非线性 高维小样本 代谢组学
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部