期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
基于源模型贡献量化的多无源域适应
1
作者 田青 刘祥 +2 位作者 王斌 郁江森 申镓硕 《计算机科学》 北大核心 2025年第2期116-124,共9页
作为机器学习领域的研究新方向,多无源域适应旨在将多个源域模型中的知识迁移到目标域,以实现对目标域样本的准确预测。本质上,解决多无源域适应的关键在于如何量化多个源模型对目标域的贡献,并利用源模型中的多样性知识来适应目标域。... 作为机器学习领域的研究新方向,多无源域适应旨在将多个源域模型中的知识迁移到目标域,以实现对目标域样本的准确预测。本质上,解决多无源域适应的关键在于如何量化多个源模型对目标域的贡献,并利用源模型中的多样性知识来适应目标域。为了应对上述问题,提出了一种基于源模型贡献量化(Source Model Contribution Quantizing,SMCQ)的多无源域适应方法。具体而言,提出了源模型可转移性感知,以量化源模型的可转移性贡献,从而为目标域模型有效地分配源模型的自适应权重。其次,引入了信息最大化方法,以缩小跨域的分布差异,并解决模型退化的问题。然后,提出了可信划分全局对齐方法,该方法用于划分高可信和低可信样本,以应对域差异引起的嘈杂环境,并有效降低标签分配错误的风险。此外,还引入了样本局部一致性损失,以减小伪标签噪声对低可信样本聚类错误的影响。最后,在多个数据集上进行实验,验证了所提方法的有效性。 展开更多
关键词 无源适应 多模型贡献量化 模型可转移性感知 信息最大化 样本可信划分
在线阅读 下载PDF
无源多领域自适应糖尿病视网膜病变分类方法
2
作者 张光华 杨阳 徐国华 《液晶与显示》 北大核心 2025年第7期1080-1091,共12页
对于基于深度学习域自适应方法的糖尿病视网膜病变诊断,本文提出的扩散域注意力迁移学习模型由两个主要模块构成。首先,去噪扩散概率糖尿病视网膜病变图像生成模块通过生成丰富且多样化的目标域样本,促使模型学习更全面的目标域特征。其... 对于基于深度学习域自适应方法的糖尿病视网膜病变诊断,本文提出的扩散域注意力迁移学习模型由两个主要模块构成。首先,去噪扩散概率糖尿病视网膜病变图像生成模块通过生成丰富且多样化的目标域样本,促使模型学习更全面的目标域特征。其次,设计了无源多领域注意力集成模块,在无需访问源域数据的情况下,实现了多个源域预训练模型的加权注意力集成,从而在实例特定特征和领域一致特征之间取得了良好的平衡。实验结果表明,模型在可转诊糖尿病视网膜病变诊断任务中分别达到了90.66%的准确率、87.47%的精确度、85.41%的敏感度、91.63%的特异度和86.42%的F1分数。同时,模型在正常/异常视网膜病变识别任务中达到了96.75%的准确率、99.23%的精确度、90.47%的敏感度、99.27%的特异度以及94.65%的F1分数。本文模型在不访问源域数据且目标域样本无标签的前提下能够进行有效的视网膜病变诊断。 展开更多
关键词 糖尿病视网膜病变 深度学习 无源多领自适应 扩散注意力迁移学习
在线阅读 下载PDF
基于多原型重放和对齐的类增量无源域适应
3
作者 田青 康陆禄 周亮宇 《计算机科学》 北大核心 2025年第3期206-213,共8页
传统无源域适应通常假设目标域数据全部可用,然而在实际应用中目标域数据常以流的形式出现,即未标记的目标域中的类会依次增加,这无疑带来了新的挑战。首先,在每个时间步骤中,目标域的标签空间都是源域的一个子集,盲目对齐反而会导致模... 传统无源域适应通常假设目标域数据全部可用,然而在实际应用中目标域数据常以流的形式出现,即未标记的目标域中的类会依次增加,这无疑带来了新的挑战。首先,在每个时间步骤中,目标域的标签空间都是源域的一个子集,盲目对齐反而会导致模型性能下降;其次,在学习新类的过程中会破坏先前学习到的知识,导致之前知识的灾难性遗忘。为了解决这些问题,提出了一种基于多原型重放和对齐(MPRA)的方法。该方法通过累积预测概率检测目标域中的共享类来应对标签空间不一致问题,并采用多原型重放来处理灾难性遗忘,提高模型的记忆能力。同时,基于多原型和源模型权重进行跨域的对比学习,从而对齐特征分布,提高模型性能。大量的实验表明,所提方法在3个基准数据集上都取得了优越的表现。 展开更多
关键词 无源适应 类增量学习 多原型 对比学习 迁移学习
在线阅读 下载PDF
基于Swin-Transformer的多尺度多源域自适应轴承故障诊断
4
作者 周玉国 张志凯 +2 位作者 张金超 于春风 周立俭 《机床与液压》 北大核心 2025年第1期32-42,共11页
针对当前多源域自适应方法无法充分挖掘多源域中不同尺度故障信息的问题,提出一种基于Swin-Transformer(Swin-T)的多尺度多源域自适应轴承故障诊断方法。通过连续小波变换,获得振动信号在不同频带的特征。为更充分地利用多源域中不同尺... 针对当前多源域自适应方法无法充分挖掘多源域中不同尺度故障信息的问题,提出一种基于Swin-Transformer(Swin-T)的多尺度多源域自适应轴承故障诊断方法。通过连续小波变换,获得振动信号在不同频带的特征。为更充分地利用多源域中不同尺度的故障信息,提出基于Swin-T的多尺度特征提取网络。为了减小各域之间的数据分布差异,构建基于最大均值差异的特征对齐网络,并根据不同尺度对分类的贡献赋予权值。此外,构建多尺度特征融合模块,对不同尺度的特征信息进行融合,得到故障特征集。最后,利用Softmax对特征集进行故障分类,并通过最小化多分类器预测差异损失得到最终分类结果。在凯斯西储大学和青岛理工大学轴承数据集上,该方法的故障分类准确度分别达到99.63%和99.40%。 展开更多
关键词 轴承 故障诊断 自适应 Swin-Transformer 多尺度特征提取 最大均值差异
在线阅读 下载PDF
基于多源域适应的缺陷类别预测方法
5
作者 邢颖 赵梦赐 +4 位作者 杨斌 张俞炜 李文瑾 顾佳伟 袁军 《软件学报》 EI CSCD 北大核心 2024年第7期3227-3244,共18页
随着规模和复杂性的迅猛膨胀,软件系统中不可避免地存在缺陷.近年来,基于深度学习的缺陷预测技术成为软件工程领域的研究热点.该类技术可以在不运行代码的情况下发现其中潜藏的缺陷,因而在工业界和学术界受到了广泛的关注.然而,已有方... 随着规模和复杂性的迅猛膨胀,软件系统中不可避免地存在缺陷.近年来,基于深度学习的缺陷预测技术成为软件工程领域的研究热点.该类技术可以在不运行代码的情况下发现其中潜藏的缺陷,因而在工业界和学术界受到了广泛的关注.然而,已有方法大多关注方法级的源代码中是否存在缺陷,无法精确识别具体的缺陷类别,从而降低了开发人员进行缺陷定位及修复工作的效率.此外,在实际软件开发实践中,新项目通常缺乏足够的缺陷数据来训练高精度的深度学习模型,而利用已有项目的历史数据训练好的模型往往在新项目上无法达到良好的泛化性能.因此,首先将传统的二分类缺陷预测任务表述为多标签分类问题,即,使用CWE(common weakness enumeration)中描述的缺陷类别作为细粒度的模型预测标签.为了提高跨项目场景下的模型性能,提出一种融合对抗训练和注意力机制的多源域适应框架.该框架通过对抗训练来减少域(即软件项目)差异,并进一步利用域不变特征来获得每个源域和目标域之间的特征相关性.同时,该框架还利用加权最大均值差异作为注意力机制,以最小化源域和目标域特征之间的表示距离,从而使模型可以学习到更多的域无关特征.在构建的包含8个真实世界开源项目的数据集上的实验表明,所提方法对比最先进的基线方法取得了显著的性能提升. 展开更多
关键词 缺陷类别预测 适应 对抗训练 注意力机制
在线阅读 下载PDF
基于多源域自适应残差网络的滚动轴承故障诊断 被引量:4
6
作者 高学金 张震华 +1 位作者 高慧慧 齐咏生 《振动与冲击》 EI CSCD 北大核心 2024年第7期290-299,共10页
针对传统无监督领域自适应方法扩展到多工况滚动轴承故障诊断场景适用性较弱的问题,提出了一种多源域自适应残差网络(multi-source domain adaptive residual network,MDARN),通过对齐来自多个源域的相关子域,从而提高模型在多工况下的... 针对传统无监督领域自适应方法扩展到多工况滚动轴承故障诊断场景适用性较弱的问题,提出了一种多源域自适应残差网络(multi-source domain adaptive residual network,MDARN),通过对齐来自多个源域的相关子域,从而提高模型在多工况下的故障诊断性能。首先,利用ResNeXt残差网络从源域和目标域充分提取可迁移特征;然后,引入局部最大平均差异(local maximum mean difference,LMMD)准则,以两个源域的子域为基础对齐目标域中相关子域,减少相关子域间和全局域间的分布差异;最后,利用美国凯斯西储大学轴承数据集和MFS机械综合故障试验台产生的真实的轴承振动数据集,对所提方法进行了试验验证。结果表明,该方法在多工况下的平均故障诊断精度高达99.76%。与现有代表性方法相比,所提方法具有更好的故障诊断效果。 展开更多
关键词 滚动轴承故障诊断 自适应残差网络(MDARN) 自适应 局部最大均值差异(LMMD)
在线阅读 下载PDF
融合时频特征的多源无监督域自适应轴承故障诊断方法 被引量:2
7
作者 金怀平 刘志泳 +2 位作者 王彬 钱斌 刘海鹏 《振动与冲击》 EI CSCD 北大核心 2024年第13期12-24,共13页
无监督域自适应已成为多工况下轴承故障诊断的一种重要方法。然而,现有多源无监督域自适应方法往往忽略不同视角信号对于跨域故障诊断的贡献,不足以全面表达轴承的故障特征。此外,这些方法的不同源域对同一目标域的预测结果存在差异。为... 无监督域自适应已成为多工况下轴承故障诊断的一种重要方法。然而,现有多源无监督域自适应方法往往忽略不同视角信号对于跨域故障诊断的贡献,不足以全面表达轴承的故障特征。此外,这些方法的不同源域对同一目标域的预测结果存在差异。为此,提出一种融合时频特征的多源无监督域自适应(time-frequency features fused multi-source unsupervised domain adaptation,TFFMUDA)轴承故障诊断方法。该方法以时域和频域信号为输入,通过特征耦合机制实现两种故障特征的互补,并利用分类器对齐策略增强了不同源域对于同一目标域的诊断一致性。通过实际轴承故障案例的试验结果表明,所提方法相较于现有无监督域自适应轴承故障诊断方法能获得更清晰的故障类决策边界并具有更好的目标域诊断精度。 展开更多
关键词 轴承故障诊断 无监督自适应 时频特征 特征融合 特征耦合
在线阅读 下载PDF
基于多源域适应JYPLS迁移的间歇过程质量预测 被引量:1
8
作者 王润 褚菲 +2 位作者 马小平 贾润达 陆宁云 《控制工程》 CSCD 北大核心 2024年第1期32-39,共8页
针对间歇过程数据不足,单源域迁移存在模型偏移,跨域信息损失导致建模效果不佳、负迁移等问题,结合域适应学习和多源域学习方法的优势,提出一种基于多源域适应联合Y偏最小二乘(joint-Y partial least squares,JYPLS)迁移的间歇过程质量... 针对间歇过程数据不足,单源域迁移存在模型偏移,跨域信息损失导致建模效果不佳、负迁移等问题,结合域适应学习和多源域学习方法的优势,提出一种基于多源域适应联合Y偏最小二乘(joint-Y partial least squares,JYPLS)迁移的间歇过程质量预测方法。该方法通过迁移学习使用相似旧过程的数据辅助新过程建模,提高建模效率和模型预测精度;采用多源域适应的方式,通过引入多个源域,有效避免了负迁移;基于域适应思想减少源域和目标域之间的边缘概率分布差异,使得源域知识在目标域更好地泛化。最后,通过青霉素发酵过程的仿真案例验证了所提方法的有效性。 展开更多
关键词 间歇过程 质量预测 迁移学习 适应
在线阅读 下载PDF
基于自适应权重的多源部分域适应 被引量:2
9
作者 田青 孙灿宇 储奕 《软件学报》 EI CSCD 北大核心 2024年第4期1703-1716,共14页
作为机器学习的一个新兴领域,多源部分域适应(MSPDA)问题由于其源域自身的复杂性、领域之间的差异性以及目标域自身的无监督性,给相关研究带来了挑战,以致目前鲜有相关工作被提出.在该场景下,多个源域中的无关类样本在域适应过程中会造... 作为机器学习的一个新兴领域,多源部分域适应(MSPDA)问题由于其源域自身的复杂性、领域之间的差异性以及目标域自身的无监督性,给相关研究带来了挑战,以致目前鲜有相关工作被提出.在该场景下,多个源域中的无关类样本在域适应过程中会造成较大的累积误差和负迁移.此外,现有多源域适应方法大多未考虑不同源域对目标域任务的贡献度不同.因此,提出基于自适应权重的多源部分域适应方法(AW-MSPDA).首先,构建了多样性特征提取器以有效利用源域的先验知识;同时,设计了多层次分布对齐策略从不同层面消除了分布差异,促进了正迁移;此外,为量化不同源域贡献度以及过滤源域无关类样本,利用相似性度量以及伪标签加权方式构建自适应权重;最后,通过大量实验验证了所提出AW-MSPDA算法的泛化性以及优越性. 展开更多
关键词 部分适应 负迁移 多样性特征提取 多层次分布对齐 自适应权重
在线阅读 下载PDF
基于类别感知与重加权的多源域自适应算法
10
作者 谭棉 李志玲 +2 位作者 陈望 曾涛涛 冯夫健 《电子测量技术》 北大核心 2024年第17期80-88,共9页
多源域自适应是迁移学习中的一个重要分支,类别偏移是多源域自适应领域的热点难题之一,其本质是源域和目标域类别分布不匹配的问题。针对此问题,提出了一种基于类别感知与重加权的多源域自适应算法,该算法通过类别感知策略增强相似类别... 多源域自适应是迁移学习中的一个重要分支,类别偏移是多源域自适应领域的热点难题之一,其本质是源域和目标域类别分布不匹配的问题。针对此问题,提出了一种基于类别感知与重加权的多源域自适应算法,该算法通过类别感知策略增强相似类别间的正向迁移;同时,引入重加权矩匹配策略,减少不同层面的分布差异;此外,利用伪标签构建自适应权重,有效降低类别偏移的影响。在Digits-five和Office-Caltech10两个数据集上的任务分类准确率分别达到了94.11%和97.18%,实验结果表明,所提算法相比于当前典型的多源域自适应算法在类别偏移场景下的准确性方面有显著提升。 展开更多
关键词 迁移学习 自适应 类别感知 矩匹配 自适应加权
在线阅读 下载PDF
局部一致性主动学习的源域无关开集域自适应
11
作者 王帆 韩忠义 +1 位作者 苏皖 尹义龙 《软件学报》 EI CSCD 北大核心 2024年第4期1651-1666,共16页
无监督域自适应在解决训练集(源域)和测试集(目标域)分布不一致的问题上已经取得了一定的成功.在面向低能耗场景和开放动态任务环境时,在资源约束和开放类别出现的情况下,现有的无监督域自适应方法面临着严峻的挑战.源域无关开集域自适... 无监督域自适应在解决训练集(源域)和测试集(目标域)分布不一致的问题上已经取得了一定的成功.在面向低能耗场景和开放动态任务环境时,在资源约束和开放类别出现的情况下,现有的无监督域自适应方法面临着严峻的挑战.源域无关开集域自适应(SF-ODA)旨在将源域模型中的知识迁移到开放类出现的无标签目标域,从而在无源域数据资源的限制下辨别公共类和检测开放类.现有的源域无关开集域自适应的方法聚焦于设计准确检测开放类别的源域模型或增改模型的结构.但是,这些方法不仅需要额外的存储空间和训练开销,而且在严格的隐私保护场景下难以实现.提出了一个更加实际的场景:主动学习的源域无关开集域自适应(ASF-ODA),目标是基于一个普通训练的源域模型和少量专家标注的有价值的目标域样本来实现鲁棒的迁移.为了达成此目标,提出了局部一致性主动学习(LCAL)算法.首先,利用目标域中局部特征标签一致的特点,LCAL设计了一种新的主动选择方法:局部多样性选择,来挑选更有价值的阈值模糊样本来促进开放类和公共类分离.接着,LCAL基于信息熵初步筛选出潜在的公共类集合和开放类集合,并利用第一步得到的主动标注样本对这两个集合进行匹配纠正,得到两个对应的可信集合.最后,LCAL引入开集损失和信息最大化损失来进一步促使公共类和开放类分离,引入交叉熵损失来实现公共类的辨别.在Office-31、Office-Home和VisDA-C这3个公开的基准数据集上的大量实验表明:在少量有价值的目标域样本的帮助下,LCAL不仅显著优于现有的源域无关开集域自适应方法,还大幅度超过了现有的主动学习方法的表现,在某些迁移任务上可以提升20%. 展开更多
关键词 约束 开集识别 无关自适应 开集自适应 主动学习
在线阅读 下载PDF
基于多源域迁移学习的船舶电力负荷预测研究
12
作者 邢承斌 刘斌 +4 位作者 汪大春 岳小林 马明轩 马君 王伟 《舰船科学技术》 北大核心 2025年第7期153-159,共7页
复杂工况和恶劣环境下的船舶电力负荷预测对船舶的能量管理意义重大,因此提出一种基于多源域迁移学习(MDT)、稀疏自编码器(SAE)和nCPSO算法优化一维卷积神经网络和双向长短时记忆神经网络(nCPSO-1DCNN-BiLSTM)的船舶电力负荷预测模型。... 复杂工况和恶劣环境下的船舶电力负荷预测对船舶的能量管理意义重大,因此提出一种基于多源域迁移学习(MDT)、稀疏自编码器(SAE)和nCPSO算法优化一维卷积神经网络和双向长短时记忆神经网络(nCPSO-1DCNN-BiLSTM)的船舶电力负荷预测模型。首先利用SAE增强多工况数据特征,然后建立nCPSO-1DCNN-BiLSTM特征提取模型,最后在互相关法(CORAL)和联合最大平均差异法(JMMD)算法作用下实现域间自适应并利用多个源域数据进行目标域电力负荷预测。结果表明,所提方法在多种工况下较不迁移和单源域迁移模型精度均有所提升,对船舶设备的能量管理具有一定指导意义。 展开更多
关键词 船舶电力负荷预测 多工况 迁移 自适应
在线阅读 下载PDF
基于无源域适应的脑电情绪识别
13
作者 赵红宇 李畅 +3 位作者 刘羽 成娟 宋仁成 陈勋 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第2期129-142,共14页
现有脑电情绪识别中的域适应方法利用源域数据及其特征分布来训练模型,不可避免地需要频繁访问源域,可能会导致源域受试者的隐私信息泄露。针对该问题,本研究提出一种基于高斯混合模型、核范数最大化和Tsallis熵的无源域适应(GNTSFDA)... 现有脑电情绪识别中的域适应方法利用源域数据及其特征分布来训练模型,不可避免地需要频繁访问源域,可能会导致源域受试者的隐私信息泄露。针对该问题,本研究提出一种基于高斯混合模型、核范数最大化和Tsallis熵的无源域适应(GNTSFDA)脑电情绪识别方法。首先,基于源域数据和本研究所提出的CNN和Transformer特征混合(CTFM)网络,利用交叉熵损失训练得到源域模型;然后,通过高斯混合模型聚类生成目标域数据的伪标签以构建分类损失;最后,基于伪标签和分类损失在目标域数据上对源域模型再训练以更新其参数,从而得到目标域模型,训练过程中还利用核范数最大化损失来提升模型预测的类判别性和多样性,同时利用Tsallis熵损失来减少模型预测的不确定性。GNTSFDA方法采用留一被试交叉验证的实验范式分别在SEED(源域14个受试者,目标域1个受试者)、SEED-IV(源域14个受试者,目标域1个受试者)和DEAP(源域31个受试者,目标域1个受试者)公开数据集上进行了实验。结果显示,在3个数据集上,目标域模型情绪识别的准确率分别为80.20%、61.20%和58.89%,相较于源域模型分别提升8.98%、7.72%和6.54%。GNTSFDA方法仅需要访问源域模型参数,而不是源域,从而有效地保护了源域受试者的隐私信息,在脑电情绪识别的实际应用中具有重要意义。 展开更多
关键词 脑电信号 情绪识别 无源适应 隐私保护
在线阅读 下载PDF
多源域联合对齐的自适应故障诊断方法
14
作者 聂晓音 韩秦 +2 位作者 吴沛澜 曹允山 谢刚 《科学技术与工程》 北大核心 2024年第28期12127-12134,共8页
单源域自适应故障诊断方法常出现域不匹配的问题,导致负迁移和泛化能力不足。同时,实际工业中往往包含多个源域数据,且目标域中包含的信息在不同源域中存在较大差异。因此,提出一种多源域联合对齐的自适应故障诊断方法。首先,面对多传... 单源域自适应故障诊断方法常出现域不匹配的问题,导致负迁移和泛化能力不足。同时,实际工业中往往包含多个源域数据,且目标域中包含的信息在不同源域中存在较大差异。因此,提出一种多源域联合对齐的自适应故障诊断方法。首先,面对多传感信号,采用平均拼接融合方法,形成融合信号;其次,提出嵌入可迁移残差模块的多尺度特征提取模块,既保证多尺度的特征提取,又增强模型的非额外参数化可迁移性。最后,结合自适应超参数和多核最大均值差异作为正则项减少网络层中数据分布的差异。将可迁移残差模块作为结构优化策略和多核最大均值差异作为统计变换策略联合使用,称为联合对齐。实验结果表明:整个模型无需引入多余的超参数,即可实现多源域的高准确率故障诊断需求。 展开更多
关键词 故障诊断 多尺度 联合对齐 自适应
在线阅读 下载PDF
基于多源域适应的单细胞智能分类
15
作者 魏琢艺 罗迈 +3 位作者 李文兵 曾远松 余伟江 杨跃东 《计算机工程》 CAS CSCD 北大核心 2024年第6期48-55,共8页
单细胞核糖核酸(RNA)测序技术被成功应用于产生人体组织和器官的高分辨率细胞图谱,这加深了研究者们对人类疾病组织中细胞异质性的理解。细胞注释是单细胞RNA测序数据分析中非常关键的一步,许多典型的模型利用一个有标签的单细胞参考数... 单细胞核糖核酸(RNA)测序技术被成功应用于产生人体组织和器官的高分辨率细胞图谱,这加深了研究者们对人类疾病组织中细胞异质性的理解。细胞注释是单细胞RNA测序数据分析中非常关键的一步,许多典型的模型利用一个有标签的单细胞参考数据集去注释目标数据集,但目标数据集中部分细胞类型可能不在参考数据集中。整合多个参考数据集可以更好地覆盖目标数据集中的细胞类型,然而多个参考数据集和目标数据集之间存在因测序技术差异等原因造成的批次效应。为此,提出一种基于多源域适应的单细胞分类模型,利用多个已标注细胞类型的参考数据集分别与未标注细胞类型的目标数据集进行对抗训练,消除了批次效应。采用虚拟对抗训练,进一步提升模型预测结果对数据点周围局部微小扰动或噪声的鲁棒性,防止过拟合。在多个单细胞数据集上的实验结果表明,该模型比目前主流模型的细胞识别精度至少提升了5个百分点,为新测序的单细胞身份鉴定提供了新的选择和参考。 展开更多
关键词 单细胞核糖核酸测序 单细胞分类 适应 对抗训练 深度学习
在线阅读 下载PDF
融合动态残差的多源域自适应算法研究 被引量:2
16
作者 王斌 李昕 《计算机工程与应用》 CSCD 北大核心 2022年第7期162-166,共5页
多源域自适应问题通常是指拥有多个源域与单个目标域的场景。常见做法是依据域标签两两对齐源域与目标域分布,通过减小域间距离,将分布映射到共同隐空间内,去预测未知目标域的数据分类。源数据集通常需要域标签,且模型在经过训练阶段后... 多源域自适应问题通常是指拥有多个源域与单个目标域的场景。常见做法是依据域标签两两对齐源域与目标域分布,通过减小域间距离,将分布映射到共同隐空间内,去预测未知目标域的数据分类。源数据集通常需要域标签,且模型在经过训练阶段后,参数固定,这就很难达到拟合未知目标域分布的目的。基于动态残差块的多源域自适应算法不是从域的角度而是从数据自身特征映射生成神经网络参数,不需要域标签,将多源域自适应问题转化为单源域问题。而且动态残差块能够跨阶段的根据输入数据特征改变网络参数,更好地让网络参数拟合未经训练的目标域数据分布,简化了多源域自适应的模型设计复杂程度,减少了数据准备工作量。实验结果表明,在模型中引入动态残差块,与静态模型相比准确率提高了8.1%,同时也节约了模型运行的时间和空间。 展开更多
关键词 自适应 动态残差块 自适应 迁移学习 深度学习
在线阅读 下载PDF
多源域子域自适应的滚动轴承剩余寿命预测方法 被引量:10
17
作者 黄庆卿 胡欣堪 +2 位作者 韩延 林志超 张焱 《电子测量与仪器学报》 CSCD 北大核心 2022年第10期100-107,共8页
针对单一源域信息有限、域自适应对齐粒度不足导致滚动轴承剩余寿命(remain useful life,RUL)预测精度低的问题,提出了一种多源域子域自适应(multi-source subdomain adaption network,MS_SAN)的滚动轴承剩余寿命预测方法。首先,将采集... 针对单一源域信息有限、域自适应对齐粒度不足导致滚动轴承剩余寿命(remain useful life,RUL)预测精度低的问题,提出了一种多源域子域自适应(multi-source subdomain adaption network,MS_SAN)的滚动轴承剩余寿命预测方法。首先,将采集的原始振动信号进行快速傅里叶变换得到频域信号作为模型的输入。其次,利用一维卷积将多个源域与目标域数据映射到一个公共的特征空间,采用局部最大均值差异将每个源域与目标域的退化阶段在独立的特征空间进行领域自适应,缩小多个源域与目标域之间的分布差异。最后,通过综合各领域RUL预测模块的输出得到最终轴承剩余寿命预测结果。在PHM2012数据集上的测试结果表明该方法的预测准确率高于对比方法,能够对滚动轴承剩余寿命进行有效的预测。 展开更多
关键词 滚动轴承 剩余使用寿命 自适应
在线阅读 下载PDF
SSD联合邻域伪标签的无源域旋转机械迁移诊断研究 被引量:1
18
作者 杨汶金 刘韬 +1 位作者 王振亚 王贵勇 《振动与冲击》 EI CSCD 北大核心 2024年第23期329-336,共8页
针对迁移诊断中存在的源域和目标域分布差异导致的负迁移以及过分依赖源域样本带来的数据隐私问题,提出一种利用邻域信息优化伪标签监督训练的无源域自适应(source-free domain adaptation,SFDA)迁移诊断方法以实现在无源域样本情况下... 针对迁移诊断中存在的源域和目标域分布差异导致的负迁移以及过分依赖源域样本带来的数据隐私问题,提出一种利用邻域信息优化伪标签监督训练的无源域自适应(source-free domain adaptation,SFDA)迁移诊断方法以实现在无源域样本情况下的迁移诊断。首先,通过奇异谱分解(singular spectrum decomposition,SSD)方法对数据进行降噪处理,使得样本具有更丰富的故障信息,然后,基于一维卷积神经网络构建特征提取器以提取域不变特征;其次,采用对比学习框架拉近同一类样本特征,利用聚合邻域信息精炼后的伪标签进行自监督学习;最后,基于智能诊断模型完成跨设备变工况下滚动轴承健康状态的识别。通过两个滚动轴承数据集间的跨设备迁移诊断验证所提方法的有效性。试验结果表明:所提方法能够充分挖掘不同设备间故障特征信息,提高无源无监督跨域条件下的迁移诊断精度。 展开更多
关键词 无源自适应(sfda) 伪标签 迁移学习 故障诊断 奇异谱分解(SSD)
在线阅读 下载PDF
基于深度学习的医学图像分析域自适应研究 被引量:1
19
作者 李佳燨 刘红英 万亮 《计算机应用研究》 CSCD 北大核心 2024年第5期1291-1300,共10页
深度学习技术的广泛应用有力推动了医学图像分析领域的发展,然而大多数深度学习方法通常假设训练集和测试集是独立同分布的,这个假设在模型临床部署时很难保证实现,因此常出现模型性能下降、场景泛化能力不强的困境。基于深度学习的域... 深度学习技术的广泛应用有力推动了医学图像分析领域的发展,然而大多数深度学习方法通常假设训练集和测试集是独立同分布的,这个假设在模型临床部署时很难保证实现,因此常出现模型性能下降、场景泛化能力不强的困境。基于深度学习的域自适应技术是提升模型迁移能力的主流方法,其目的是使在一个数据集上训练的模型能够在另一个没有或只有少量标签的数据集上也获得较好结果。由于医学图像存在着样本获取和标注困难、图像性质特殊、模态差异等情况,这给域自适应技术带来很多现实挑战。首先介绍域自适应的定义及面临的主要挑战,进而从技术角度分类总结了近年来的相关算法,并对比分析其优缺点;然后详细介绍了域自适应常用的医学图像数据集以及相关算法结果情况;最后,从发展瓶颈、技术手段、交叉领域等方面,展望了面向医学图像分析的域自适应的未来研究方向。 展开更多
关键词 医学图像分析 自适应 间偏移 目标
在线阅读 下载PDF
伪标签不确定性估计的源域无关鲁棒域自适应 被引量:3
20
作者 王帆 韩忠义 尹义龙 《软件学报》 EI CSCD 北大核心 2022年第4期1183-1199,共17页
无监督域自适应是解决训练集(源域)和测试集(目标域)分布不一致的有效途径之一.现有的无监督域自适应的理论和方法在相对封闭、静态的环境下取得了一定成功,但面向开放动态任务环境时,在隐私保护、数据孤岛等限制条件下,源域数据往往不... 无监督域自适应是解决训练集(源域)和测试集(目标域)分布不一致的有效途径之一.现有的无监督域自适应的理论和方法在相对封闭、静态的环境下取得了一定成功,但面向开放动态任务环境时,在隐私保护、数据孤岛等限制条件下,源域数据往往不可直接获取,现有无监督域自适应方法的鲁棒性将面临严峻的挑战.鉴于此,研究了一个更具挑战性却又未被充分探索的问题:源域无关的无监督域自适应,目标是仅依据预训练的源域模型和无标签目标域数据,实现源域向目标域的正向迁移.提出一种基于伪标签不确定性估计的源域无关鲁棒域自适应的方法PLUE-SFRDA(pseudo label uncertainty estimation for source free robust domain adaptation).PLUE-SFRDA的核心思想是:根据源域模型的预测结果,联合信息熵和能量函数充分挖掘目标域数据的隐含信息,探索类原型和类锚点,以准确估计目标域数据的伪标签,进而调优域自适应模型,实现源域数据无关的鲁棒域自适应.PLUESFRDA包含提出的二元软约束信息熵,解决了标准信息熵不能有效估计处于决策边界样本的不确定性的问题,增强了所挖掘的类原型和类锚点的可信度,进而提高了目标域伪标签估计的准确率.PLUE-SFRDA包含了提出的加权对比过滤方法,通过比较每个样本距离该类的类锚点和其他类的类锚点的加权距离,过滤掉处于决策边界的类别信息模糊样本,进一步提高了伪标签不确定性估计的安全性.PLUE-SFDRA还包含一个信息最大化损失,实现源域分类器和伪标签估计器迭代优化,逐渐将源域模型中蕴含的源域知识迁移至目标域,进一步提高了伪标签不确定性估计的鲁棒性.在Office-31,Office-Home和VisDA-C这3个公开的基准数据集上的大量实验表明:PLUE-SFRDA不仅超过了最新的源域无关的域自适应方法的表现,还显著优于现有的依赖源域数据的域自适应方法. 展开更多
关键词 无监督自适应 无关的自适应 伪标签学习 信息熵 能量函数 不确定性估计
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部