作为机器学习领域的研究新方向,多无源域适应旨在将多个源域模型中的知识迁移到目标域,以实现对目标域样本的准确预测。本质上,解决多无源域适应的关键在于如何量化多个源模型对目标域的贡献,并利用源模型中的多样性知识来适应目标域。...作为机器学习领域的研究新方向,多无源域适应旨在将多个源域模型中的知识迁移到目标域,以实现对目标域样本的准确预测。本质上,解决多无源域适应的关键在于如何量化多个源模型对目标域的贡献,并利用源模型中的多样性知识来适应目标域。为了应对上述问题,提出了一种基于源模型贡献量化(Source Model Contribution Quantizing,SMCQ)的多无源域适应方法。具体而言,提出了源模型可转移性感知,以量化源模型的可转移性贡献,从而为目标域模型有效地分配源模型的自适应权重。其次,引入了信息最大化方法,以缩小跨域的分布差异,并解决模型退化的问题。然后,提出了可信划分全局对齐方法,该方法用于划分高可信和低可信样本,以应对域差异引起的嘈杂环境,并有效降低标签分配错误的风险。此外,还引入了样本局部一致性损失,以减小伪标签噪声对低可信样本聚类错误的影响。最后,在多个数据集上进行实验,验证了所提方法的有效性。展开更多
针对间歇过程数据不足,单源域迁移存在模型偏移,跨域信息损失导致建模效果不佳、负迁移等问题,结合域适应学习和多源域学习方法的优势,提出一种基于多源域适应联合Y偏最小二乘(joint-Y partial least squares,JYPLS)迁移的间歇过程质量...针对间歇过程数据不足,单源域迁移存在模型偏移,跨域信息损失导致建模效果不佳、负迁移等问题,结合域适应学习和多源域学习方法的优势,提出一种基于多源域适应联合Y偏最小二乘(joint-Y partial least squares,JYPLS)迁移的间歇过程质量预测方法。该方法通过迁移学习使用相似旧过程的数据辅助新过程建模,提高建模效率和模型预测精度;采用多源域适应的方式,通过引入多个源域,有效避免了负迁移;基于域适应思想减少源域和目标域之间的边缘概率分布差异,使得源域知识在目标域更好地泛化。最后,通过青霉素发酵过程的仿真案例验证了所提方法的有效性。展开更多
文摘作为机器学习领域的研究新方向,多无源域适应旨在将多个源域模型中的知识迁移到目标域,以实现对目标域样本的准确预测。本质上,解决多无源域适应的关键在于如何量化多个源模型对目标域的贡献,并利用源模型中的多样性知识来适应目标域。为了应对上述问题,提出了一种基于源模型贡献量化(Source Model Contribution Quantizing,SMCQ)的多无源域适应方法。具体而言,提出了源模型可转移性感知,以量化源模型的可转移性贡献,从而为目标域模型有效地分配源模型的自适应权重。其次,引入了信息最大化方法,以缩小跨域的分布差异,并解决模型退化的问题。然后,提出了可信划分全局对齐方法,该方法用于划分高可信和低可信样本,以应对域差异引起的嘈杂环境,并有效降低标签分配错误的风险。此外,还引入了样本局部一致性损失,以减小伪标签噪声对低可信样本聚类错误的影响。最后,在多个数据集上进行实验,验证了所提方法的有效性。
文摘针对传统无监督领域自适应方法扩展到多工况滚动轴承故障诊断场景适用性较弱的问题,提出了一种多源域自适应残差网络(multi-source domain adaptive residual network,MDARN),通过对齐来自多个源域的相关子域,从而提高模型在多工况下的故障诊断性能。首先,利用ResNeXt残差网络从源域和目标域充分提取可迁移特征;然后,引入局部最大平均差异(local maximum mean difference,LMMD)准则,以两个源域的子域为基础对齐目标域中相关子域,减少相关子域间和全局域间的分布差异;最后,利用美国凯斯西储大学轴承数据集和MFS机械综合故障试验台产生的真实的轴承振动数据集,对所提方法进行了试验验证。结果表明,该方法在多工况下的平均故障诊断精度高达99.76%。与现有代表性方法相比,所提方法具有更好的故障诊断效果。
文摘针对间歇过程数据不足,单源域迁移存在模型偏移,跨域信息损失导致建模效果不佳、负迁移等问题,结合域适应学习和多源域学习方法的优势,提出一种基于多源域适应联合Y偏最小二乘(joint-Y partial least squares,JYPLS)迁移的间歇过程质量预测方法。该方法通过迁移学习使用相似旧过程的数据辅助新过程建模,提高建模效率和模型预测精度;采用多源域适应的方式,通过引入多个源域,有效避免了负迁移;基于域适应思想减少源域和目标域之间的边缘概率分布差异,使得源域知识在目标域更好地泛化。最后,通过青霉素发酵过程的仿真案例验证了所提方法的有效性。