期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于图深度强化学习的有源配电网故障恢复方法
1
作者 何小龙 高红均 +4 位作者 王仁浚 罗龙波 叶萌 黄媛 刘俊勇 《电网技术》 北大核心 2025年第10期4342-4352,I0090-I0094,共16页
配电网的拓扑结构变动频繁,负荷水平和分布式电源(distributed generator,DG)出力的不确定性使得运行场景愈加复杂多变。基于此,提出了一种基于图深度强化学习的有源配电网故障恢复方法。首先,考虑DG与负荷的时变性,构建起基于图注意力... 配电网的拓扑结构变动频繁,负荷水平和分布式电源(distributed generator,DG)出力的不确定性使得运行场景愈加复杂多变。基于此,提出了一种基于图深度强化学习的有源配电网故障恢复方法。首先,考虑DG与负荷的时变性,构建起基于图注意力网络(graph attention network,GAT)与柔性策略-评价(soft actor-critic,SAC)算法相结合的配电网故障恢复框架,介绍故障恢复方法及其算法原理。然后,建立面向配电网故障恢复的图深度强化学习模型,通过将GAT嵌入到SAC算法的前置神经网络来提高智能体对配电网运行状态和拓扑结构的感知能力,并创新性地引入无效动作掩盖机制以规避非法动作,通过智能体与环境进行交互,寻找最优开关动作控制策略,实现高渗透率DG接入下的故障恢复趋优学习。最后,在IEEE33节点和148节点算例进行验证,并与多种基线方法进行对比测试,所提方法可以实现最快毫秒级故障恢复,具有更加高效优越的恢复效果,在拓扑变动下的负荷供电率相较于基准模型提升了4%~5%。 展开更多
关键词 有源配电网 分布式电源 故障恢复 图注意力网络 柔性策略-评价 无效动作掩盖
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部