提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容...提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容图像的全局特征,增强对屏幕内容图像整体信息的表征能力;然后使用综合局部注意力机制提取屏幕内容图像的局部特征,使局部特征能够聚焦于屏幕内容图像中更吸引人注意的细节部分;最后使用双通道特征映射模块预测屏幕内容图像的质量分数。在SCID和SIQAD数据集上,MTA-SCI的斯皮尔曼秩序相关系数(Spearman's rank order correlation coefficient,SRCC)分别达到0.9602和0.9233,皮尔森线性相关系数(Pearson linear correlation coefficient,PLCC)分别达到0.9609和0.9294。实验结果表明,MTA-SCI在预测屏幕内容图像质量任务中具有较高的准确性。展开更多
为了获得与用户主观感知相一致的颜色校正算法和对校正结果进行客观评估,本文首先创建了一个针对颜色校正的数据集ICCD(Image Color Correction Database).ICCD数据集中的颜色差异涵盖了多种类型和粒度,其中颜色差异类型包括亮度、色相...为了获得与用户主观感知相一致的颜色校正算法和对校正结果进行客观评估,本文首先创建了一个针对颜色校正的数据集ICCD(Image Color Correction Database).ICCD数据集中的颜色差异涵盖了多种类型和粒度,其中颜色差异类型包括亮度、色相、饱和度、曝光度、对比度以及RGB中的R和G通道,每类颜色差异包括3个修改粒度.本文挑选了6种具有代表性的颜色校正算法对目标图像进行校正,并通过用户调查获得校正结果图像的主观平均得分值.基于ICCD数据集,本文对6种颜色校正算法的性能进行评估,得出在大多数颜色差异和粒度上,Pitie提出的迭代颜色分布转换算法的校正性能最好,同时具有较好的稳定性.最后,本文对14种图像质量评估方法进行评估,挑选出与已有的评估方法相比与主观感知一致性更好的评估方法.展开更多
文摘提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容图像的全局特征,增强对屏幕内容图像整体信息的表征能力;然后使用综合局部注意力机制提取屏幕内容图像的局部特征,使局部特征能够聚焦于屏幕内容图像中更吸引人注意的细节部分;最后使用双通道特征映射模块预测屏幕内容图像的质量分数。在SCID和SIQAD数据集上,MTA-SCI的斯皮尔曼秩序相关系数(Spearman's rank order correlation coefficient,SRCC)分别达到0.9602和0.9233,皮尔森线性相关系数(Pearson linear correlation coefficient,PLCC)分别达到0.9609和0.9294。实验结果表明,MTA-SCI在预测屏幕内容图像质量任务中具有较高的准确性。
文摘为了获得与用户主观感知相一致的颜色校正算法和对校正结果进行客观评估,本文首先创建了一个针对颜色校正的数据集ICCD(Image Color Correction Database).ICCD数据集中的颜色差异涵盖了多种类型和粒度,其中颜色差异类型包括亮度、色相、饱和度、曝光度、对比度以及RGB中的R和G通道,每类颜色差异包括3个修改粒度.本文挑选了6种具有代表性的颜色校正算法对目标图像进行校正,并通过用户调查获得校正结果图像的主观平均得分值.基于ICCD数据集,本文对6种颜色校正算法的性能进行评估,得出在大多数颜色差异和粒度上,Pitie提出的迭代颜色分布转换算法的校正性能最好,同时具有较好的稳定性.最后,本文对14种图像质量评估方法进行评估,挑选出与已有的评估方法相比与主观感知一致性更好的评估方法.