提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容...提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容图像的全局特征,增强对屏幕内容图像整体信息的表征能力;然后使用综合局部注意力机制提取屏幕内容图像的局部特征,使局部特征能够聚焦于屏幕内容图像中更吸引人注意的细节部分;最后使用双通道特征映射模块预测屏幕内容图像的质量分数。在SCID和SIQAD数据集上,MTA-SCI的斯皮尔曼秩序相关系数(Spearman's rank order correlation coefficient,SRCC)分别达到0.9602和0.9233,皮尔森线性相关系数(Pearson linear correlation coefficient,PLCC)分别达到0.9609和0.9294。实验结果表明,MTA-SCI在预测屏幕内容图像质量任务中具有较高的准确性。展开更多
针对目前的无参考评价方法无法准确反映人类对图像质量的视觉感知效果,该文提出一种基于自然统计特征分布(DIstribution Characteristics of Natural statistics,DICN)的无参考图像质量评价方法。其原理是用小波变换将图像分解为低频子...针对目前的无参考评价方法无法准确反映人类对图像质量的视觉感知效果,该文提出一种基于自然统计特征分布(DIstribution Characteristics of Natural statistics,DICN)的无参考图像质量评价方法。其原理是用小波变换将图像分解为低频子带和高频子带部分,再将高频子带部分分成8′8的小块,提取每一子块的幅值和信息熵,并分别计算其分布直方图均值和斜度作为特征,利用支持向量回归思想对特征进行训练,建立5种不同失真类型的质量预测模型。在此基础上,采用支持向量机针对图像特征构造分类器并进行失真判断以确定不同失真的权重,结合5种失真评价模型可得到自然统计特征分布的无参考评价模型。实验结果分析表明,该算法的评价效果优于现有的经典算法,与主观评价具有较好一致性,能够准确反映人类对图像质量的视觉感知效果。展开更多
文摘提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容图像的全局特征,增强对屏幕内容图像整体信息的表征能力;然后使用综合局部注意力机制提取屏幕内容图像的局部特征,使局部特征能够聚焦于屏幕内容图像中更吸引人注意的细节部分;最后使用双通道特征映射模块预测屏幕内容图像的质量分数。在SCID和SIQAD数据集上,MTA-SCI的斯皮尔曼秩序相关系数(Spearman's rank order correlation coefficient,SRCC)分别达到0.9602和0.9233,皮尔森线性相关系数(Pearson linear correlation coefficient,PLCC)分别达到0.9609和0.9294。实验结果表明,MTA-SCI在预测屏幕内容图像质量任务中具有较高的准确性。
文摘针对目前的无参考评价方法无法准确反映人类对图像质量的视觉感知效果,该文提出一种基于自然统计特征分布(DIstribution Characteristics of Natural statistics,DICN)的无参考图像质量评价方法。其原理是用小波变换将图像分解为低频子带和高频子带部分,再将高频子带部分分成8′8的小块,提取每一子块的幅值和信息熵,并分别计算其分布直方图均值和斜度作为特征,利用支持向量回归思想对特征进行训练,建立5种不同失真类型的质量预测模型。在此基础上,采用支持向量机针对图像特征构造分类器并进行失真判断以确定不同失真的权重,结合5种失真评价模型可得到自然统计特征分布的无参考评价模型。实验结果分析表明,该算法的评价效果优于现有的经典算法,与主观评价具有较好一致性,能够准确反映人类对图像质量的视觉感知效果。