提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容...提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容图像的全局特征,增强对屏幕内容图像整体信息的表征能力;然后使用综合局部注意力机制提取屏幕内容图像的局部特征,使局部特征能够聚焦于屏幕内容图像中更吸引人注意的细节部分;最后使用双通道特征映射模块预测屏幕内容图像的质量分数。在SCID和SIQAD数据集上,MTA-SCI的斯皮尔曼秩序相关系数(Spearman's rank order correlation coefficient,SRCC)分别达到0.9602和0.9233,皮尔森线性相关系数(Pearson linear correlation coefficient,PLCC)分别达到0.9609和0.9294。实验结果表明,MTA-SCI在预测屏幕内容图像质量任务中具有较高的准确性。展开更多
文摘提出一种基于多任务注意力机制的无参考屏幕内容图像质量评价算法(multi-task attention mechanism based no reference quality assessment algorithm for screen content images,MTA-SCI)。MTA-SCI首先使用自注意力机制提取屏幕内容图像的全局特征,增强对屏幕内容图像整体信息的表征能力;然后使用综合局部注意力机制提取屏幕内容图像的局部特征,使局部特征能够聚焦于屏幕内容图像中更吸引人注意的细节部分;最后使用双通道特征映射模块预测屏幕内容图像的质量分数。在SCID和SIQAD数据集上,MTA-SCI的斯皮尔曼秩序相关系数(Spearman's rank order correlation coefficient,SRCC)分别达到0.9602和0.9233,皮尔森线性相关系数(Pearson linear correlation coefficient,PLCC)分别达到0.9609和0.9294。实验结果表明,MTA-SCI在预测屏幕内容图像质量任务中具有较高的准确性。
文摘随机散布在自然图像里的噪声失真一般会破坏图像的原始概率密度分布。研究发现,无失真自然图像和它对应的噪声图像在离散小波变换(Discrete Wavelet Transform,DWT)系数分布上有很大区别:对于自然图像,其DWT系数分布比较尖锐,峰值高,拖尾短;对于噪声图像,其系数分布则比较扁平,峰值低,拖尾长。作为一种常用的统计特征描述,峰态值可以度量和区分不同失真程度的噪声图像的DWT系数分布,而且,DWT系数分布的峰态值具有很好的频率尺度不变性。基于以上特性,提出了一种无参考噪声图像质量评价模型(Blind Noisy Image Quality Assessment model using Kurtosis,BNIQAK)。实验测试了三个最大的质量评价图像库中的五种噪声失真图像,结果表明,和现有无参考噪声评价模型、一般无参考评价模型和全参考(Full-Reference,FR)评价模型相比,BNIQAK具有更好的评价效果。