期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
注意力引导多任务学习的前列腺癌盆腔淋巴结转移预测
1
作者 张志远 胡冀苏 +3 位作者 张跃跃 钱旭升 周志勇 戴亚康 《上海交通大学学报》 北大核心 2025年第8期1216-1224,共9页
基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤... 基于前列腺癌原发灶的术前磁共振影像定量特征预测盆腔淋巴结转移(PLNM)是治疗方案制定的重要参考依据.然而,现有预测方法对肿瘤原发灶内部的异质性信息提取不足,导致提取的图像定量特征与PLNM关联性较弱.针对这一问题,提出一种以肿瘤分割任务为辅助任务的注意力引导多任务学习网络用于PLNM预测.首先,在肿瘤分割网络中,提出多分支各向异性大核注意力模块,通过不同分支和各向异性大卷积核的融合扩大的感受野以有效捕获肿瘤的局部和全局信息.其次,在PLNM预测网络中,设计多尺度特征交互融合注意力模块,对多尺度特征进行层次化融合筛选.在320例数据集的实验中,所提方法的精度召回曲线下面积值和受试者操作特征曲线下面积值分别为(85.44±2.04)%和(91.86±2.18)%,优于经典的单任务分类方法和多任务方法. 展开更多
关键词 前列腺癌盆腔淋巴结转移 多任务学习 多分支各向异性大核注意力模块 多尺度特征交互融合注意力模块 参数磁共振
在线阅读 下载PDF
一种基于元学习的改进YOLO钢管表面缺陷小样本检测模型 被引量:3
2
作者 李凌波 田彦 +1 位作者 江旭东 董宝力 《机电工程》 北大核心 2025年第5期985-993,共9页
针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取... 针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取了特征图的判别能力;然后,为了提高特征融合能力并降低计算复杂度,通过加权双向特征金字塔网络(BiFPN)结构优化了特征提取器的颈部网络,平衡了YOLO-SBN模型的有效性和效率;最后,采用归一化注意力模块(NAM)优化权重调整了模块,增强了浅层缺陷特征的模型表达,并基于这些增强的特征进行了检测;使用金属表面热轧缺陷公开数据集NEU-DET验证了YOLO-SBN模型的算法性能。研究结果表明:对于小样本缺陷检测,YOLO-SBN模型在平均准确率(mAP)方面提高了4.1%;在新类缺陷样本规模数量为50的小样本情况下,改进后的检测模型对新类数据适应性最强。由此可见,该YOLO-SBN模型在提高检测精度和提升模型泛化能力方面具有一定优势。 展开更多
关键词 小样本目标检测 表面缺陷 元学习 特征网络 归一化注意力模块 平均准确率 双向特征金字塔网络(BiFPN)
在线阅读 下载PDF
基于重参数化多尺度融合网络的高效极暗光原始图像降噪 被引量:3
3
作者 魏恺轩 付莹 《计算机科学》 CSCD 北大核心 2022年第8期120-126,共7页
实用的暗光降噪增强解决方案往往需要具备计算速度快、内存效率高、能够实现视觉上高质量的降噪等优点。现有方法大多以提升降噪质量为目标,因此在速度和内存要求上有所折中,这在很大程度上限制了其实用性。文中提出了一种新的深度降噪... 实用的暗光降噪增强解决方案往往需要具备计算速度快、内存效率高、能够实现视觉上高质量的降噪等优点。现有方法大多以提升降噪质量为目标,因此在速度和内存要求上有所折中,这在很大程度上限制了其实用性。文中提出了一种新的深度降噪网络——重参数化多尺度融合网络,用于极暗光单张原始图像降噪,在不损失降噪性能的同时加快模型的推断速度并降低内存开销。具体地,在多尺度空间提取图像特征,利用轻量级的空间通道并行注意力模块动态自适应地聚焦于空间及通道中的核心特征;同时使用重参数化的卷积单元,在不增加任何推断计算量的情况下进一步丰富模型的表征能力。该模型在常见CPU上(如Intel i7-7700K)可以在1s左右恢复超高清4K分辨率图像,在普通GPU(如NVIDIA GTX 1080Ti)上以24帧率的速度运行,在几乎4倍快于现有先进方法(如UNet)的同时仍保持具有竞争力的恢复质量。 展开更多
关键词 参数化卷积单元 多尺度融合 空间通道并行注意力模块 极暗光图像降噪
在线阅读 下载PDF
结合Segformer与增强特征金字塔的文本检测方法 被引量:2
4
作者 张铭泉 张泽恩 +1 位作者 曹锦纲 邵绪强 《智能系统学报》 CSCD 北大核心 2024年第5期1111-1125,共15页
针对自然场景文本检测算法中的小尺度文本漏检、类文本像素误检以及边缘定位不准确的问题,提出一种基于Segformer和增强特征金字塔的文本检测模型。该模型首先采用基于混合Transformer(mix Trans-former,MiT)的编码器生成多尺度特征图;... 针对自然场景文本检测算法中的小尺度文本漏检、类文本像素误检以及边缘定位不准确的问题,提出一种基于Segformer和增强特征金字塔的文本检测模型。该模型首先采用基于混合Transformer(mix Trans-former,MiT)的编码器生成多尺度特征图;然后,在具有特征金字塔结构解码器的上采样部分,提出级联融合注意力模块,通过全局平均池化、全局最大池化和Ghost模块获取全局通道信息并保留文本特征;接着,在解码器的特征融合部分提出两级正交融合注意力模块,利用非对称卷积分别从水平和垂直方向进行信息增强;最后,利用可微分二值化对结果进行后处理。将本文方法在ICDAR2015、ShopSign1265和MTWI 3个数据集上进行实验,相比于其他8种方法,本文方法的F值均为最优,分别达到了87.8%、59.1%和74.8%。结果表明,本文方法有效提高了文本检测的准确率。 展开更多
关键词 文本检测 特征金字塔 注意力机制 Segformer Ghost模块 多尺度特征融合 平均池化 最大池化
在线阅读 下载PDF
基于改进算法YOLOv5+的混凝土轨枕裂纹检测 被引量:7
5
作者 令雅莉 杨桂芹 +1 位作者 张又元 王小鹏 《铁道标准设计》 北大核心 2024年第4期70-77,87,共9页
基于既有研究成果在对混凝土轨枕裂纹检测效率不足的基础上,提出一种改进算法YOLOv5+,主要以YOLOv5网络模型为基础,对混凝土轨枕裂纹进行高效检测。首先,采用分治标签的策略来增大裂纹在标签中的实际占比,从而解决混凝土轨枕裂纹尺度变... 基于既有研究成果在对混凝土轨枕裂纹检测效率不足的基础上,提出一种改进算法YOLOv5+,主要以YOLOv5网络模型为基础,对混凝土轨枕裂纹进行高效检测。首先,采用分治标签的策略来增大裂纹在标签中的实际占比,从而解决混凝土轨枕裂纹尺度变化大的问题,使网络更利于提取有效特征;其次,将YOLOv5网络结构中SPP模块的最大池化层改为平均池化层,减少裂纹漏检的现象;同时,在YOLOv5骨干网络中嵌入SE注意力模块(Squeeze and Excitation,SE)提高对细小裂纹的检测能力;最后,结合新的检测尺度与特征融合网络,降低微小裂纹的漏检现象。实验结果表明,以YOLOv5网络模型为基础的改进算法YOLOv5+,除了召回率Recall变化不大外,精确率Precision提高6.5%,平均精度均值mAP提升8%,帧率FPS也有所提升,能够满足实时性的检测需求。 展开更多
关键词 混凝土轨枕 裂纹检测 分治标签 平均池化 注意力模块 YOLOv5+
在线阅读 下载PDF
基于改进YOLO v7的鲑鱼检测模型轻量化研究 被引量:1
6
作者 郑荣才 谭鼎文 +2 位作者 徐青 陈大勇 元轲新 《农业机械学报》 EI CAS CSCD 北大核心 2024年第11期132-139,共8页
为实现水下复杂环境下鲑鱼的快速准确识别,提出一种基于YOLO v7轻量化的鲑鱼检测模型YOLO v7-CSMRep。首先,采用Stem模块合并Backbone层的前4个卷积操作,有效降低了模型计算量。其次,使用多尺度重参数化(Multi-directional reparameteri... 为实现水下复杂环境下鲑鱼的快速准确识别,提出一种基于YOLO v7轻量化的鲑鱼检测模型YOLO v7-CSMRep。首先,采用Stem模块合并Backbone层的前4个卷积操作,有效降低了模型计算量。其次,使用多尺度重参数化(Multi-directional reparameterization,MRep)模块替代YOLO v7的ELAN和ELAN-H模块,增强了单向特征提取能力,同时大幅减少参数量和计算量。最后,在Backbone层末端集成卷积块注意力模块(Convolutional block attention module,CBAM),提升网络空间和通道特征提取能力。试验结果表明,改进后模型内存占用量、参数量和计算量分别降低4.28%、5.29%、31.30%,F1值、mAP05分别提高0.5、0.7个百分点,分别达到93.1%、97.1%,帧率提高15.41%,达到140.8 f/s。对比YOLO v5s、YOLO v6s、YOLO v7、YOLO v7-tiny、YOLO v8s模型,mAP05分别提高1.0、2.0、0.7、0.8、1.2个百分点。因此,本文提出的方法能够快速而准确地识别鲑鱼,可为深远海养殖生物量监测提供技术支撑。 展开更多
关键词 深远海养殖 鲑鱼检测 YOLO v7 Stem模块 多尺度重参数 卷积块注意力模块
在线阅读 下载PDF
基于可逆神经网络的多载体图像隐写模型 被引量:1
7
作者 卞玉星 黄荣 +1 位作者 周树波 刘浩 《计算机工程》 CAS CSCD 北大核心 2024年第12期213-223,共11页
现有多载体图像隐写方法将秘密图像的嵌入过程拆分为编码和叠加两步,将秘密图像编码为含密扰动,通过空域操作将含密扰动与多张载体图像叠加,在多张载体图像中嵌入秘密图像。这种方法的嵌入和提取这两个互逆过程分别由两个相互独立的网... 现有多载体图像隐写方法将秘密图像的嵌入过程拆分为编码和叠加两步,将秘密图像编码为含密扰动,通过空域操作将含密扰动与多张载体图像叠加,在多张载体图像中嵌入秘密图像。这种方法的嵌入和提取这两个互逆过程分别由两个相互独立的网络实现,无法共享参数,这导致计算资源消耗大、训练参数多。为解决这个问题,提出了一种基于可逆神经网络的多载体图像隐写模型,它将嵌入和提取过程分别与可逆神经网络的正向和逆向映射相关联,实现了参数共享,有效减少了网络参数量。此外,现有的模型缺乏对秘密图像重要内容级区域的重要性度量方法。针对此问题,所提算法在可逆神经网络输入端引入了空域注意力模块,以提高编码质量,关注秘密图像中的关键区域,从而提升隐写效果。同时,所提算法为多用户配给基于密钥的身份信息矩阵,建立了身份核验机制,防止攻击者非法获取秘密图像。实验结果表明,所提方法实现了较好的隐写效果,含密图像和提取出的秘密图像的峰值信噪比(PSNR)相比基线模型高8.5 dB~9.4 dB,结构相似度相比基线模型高0.012~0.019,学习感知图像块相似度相比基线模型高0.0029~0.0047,参数量仅为基线模型的17.6%。 展开更多
关键词 可逆神经网络 多载体图像隐写 身份核验机制 空域注意力模块 参数共享
在线阅读 下载PDF
基于改进YOLOv8的风电叶片表面损伤检测与识别方法 被引量:10
8
作者 吴博阳 毛胜轲 +3 位作者 林特宇 任浩杰 蔡海洋 李扬 《机电工程》 CAS 北大核心 2024年第7期1260-1268,共9页
针对风电叶片极易出现损伤和故障,且制造和维护成本高昂等问题,提出了一种基于改进YOLOv8模型的风电叶片表面损伤检测与识别方法。首先,将现场拍摄到的高清叶片图像作为实验数据集,并将其按比例随机划分为训练集、验证集和测试集;然后,... 针对风电叶片极易出现损伤和故障,且制造和维护成本高昂等问题,提出了一种基于改进YOLOv8模型的风电叶片表面损伤检测与识别方法。首先,将现场拍摄到的高清叶片图像作为实验数据集,并将其按比例随机划分为训练集、验证集和测试集;然后,在YOLOv8模型中引入了动态数据增强算法Mosaic、Mixup及离线数据增强算法Albumentations,对训练数据集进行了扩充,解决了模型在有限数据集下的泛化性问题;最后,使用卷积注意力模块(CBAM)和梯度协调机制(GHM)/Focal loss算法等手段加强了模型的损伤检测能力,改进了样本分布不均衡问题,建立了一种先进的风电叶片表面损伤检测与识别方法,提升了YOLOv8模型对叶片损伤的检测精度。研究结果表明:改进后的YOLOv8模型在计算量和参数量都较低的情况下,其平均精度(AP)、平均召回率(AR)都超越了同等配置下的快速区域卷积神经网络(Faster R-CNN)模型。改进后的YOLOv8模型在交并比(IoU)阈值为0.5时的AP和AR分别达到了73.2%和58.8%,验证了该方法在风电叶片损伤检测方面具有一定的可靠性和有效性。 展开更多
关键词 风电叶片损伤识别 YOLOv8 目标检测 数据增强算法 卷积注意力模块 梯度协调机制 平均精度 平均召回率 快速区域卷积神经网络 交并比
在线阅读 下载PDF
基于增强型多尺度残差生成对抗网络的图像压缩 被引量:1
9
作者 马婷 刘友鑫 +2 位作者 胡峰 聂伟 吴建芳 《计算机工程与设计》 北大核心 2024年第8期2415-2422,共8页
为解决低码率下更符合人类视觉感知的图像压缩,提出一种基于增强型多尺度残差生成对抗网络的有损压缩方法。在网络框架的自动编码器中,使用一种结构上改进的增强型多尺度残差块,其可以扩大感受野,更容易获得图像的全局信息。引入简易注... 为解决低码率下更符合人类视觉感知的图像压缩,提出一种基于增强型多尺度残差生成对抗网络的有损压缩方法。在网络框架的自动编码器中,使用一种结构上改进的增强型多尺度残差块,其可以扩大感受野,更容易获得图像的全局信息。引入简易注意力模块,帮助网络更加关注图像复杂的部分,减少简单部分的比特。判别器部分采用全新的相对平均判别器,在网络框架中使用LPIPS(learned perceptual image patch similarity)感知损失减轻图像伪影问题。采用两阶段训练的方式解决引入生成对抗网络导致训练不稳定的问题。实验结果表明了在低码率下所提模型的有效性,与之前的工作相比,所提方法在感知失真指标上表现更优,性能提升了65%左右,重建图像更符合人类视觉感知。 展开更多
关键词 低码率 图像压缩 生成对抗网络 多尺度残差块 注意力模块 相对平均判别器 感知损失
在线阅读 下载PDF
基于改进U-net的金属工件表面缺陷图像分割方法 被引量:9
10
作者 王一 龚肖杰 苏皓 《应用光学》 CAS 北大核心 2023年第1期86-92,共7页
针对金属工件表面小尺寸缺陷及受非均匀光照影响的图像缺陷难以分割的问题,提出了一种改进的U-net语义分割网络,实现金属工件表面缺陷图像的精确分割。首先,在U-net网络中融入CBAM(convolutional block attention module)模块来提升图... 针对金属工件表面小尺寸缺陷及受非均匀光照影响的图像缺陷难以分割的问题,提出了一种改进的U-net语义分割网络,实现金属工件表面缺陷图像的精确分割。首先,在U-net网络中融入CBAM(convolutional block attention module)模块来提升图像中缺陷目标的显著度;其次,采用深度超参数化卷积DO-Conv(depthwise over-parameterized convolutional)代替网络中部分传统卷积,增加网络可学习的参数数量;然后,采用Leaky Relu函数代替网络中部分Relu函数,提高模型对负区间的特征提取能力;最后,采用中值滤波及非均匀光照的补偿方法进行图像预处理,减弱非均匀光照对金属工件图像表面缺陷的影响。结果表明:改进后的网络平均交并比、准确率和Dice系数指标分别达到0.833 5、0.933 2、0.867 4,改进的网络显著提升了对金属工件表面缺陷图像的分割效果。 展开更多
关键词 表面缺陷 图像分割 语义分割网络 卷积注意力模块 深度超参数化卷积
在线阅读 下载PDF
融合Transformer和CNN的手掌静脉识别网络 被引量:3
11
作者 吴凯 沈文忠 +1 位作者 贾丁丁 梁娟 《计算机工程与应用》 CSCD 北大核心 2023年第24期98-109,共12页
针对手掌静脉特征提取识别精度不高问题,提出了掌静脉识别网络PVCodeNet。该网络设计了改进的BasicBlock和Transformer Encoder模块结合并运用扩大决策边界的损失函数AAM-Loss(additive angular margin loss)。该网络首次将Transformer ... 针对手掌静脉特征提取识别精度不高问题,提出了掌静脉识别网络PVCodeNet。该网络设计了改进的BasicBlock和Transformer Encoder模块结合并运用扩大决策边界的损失函数AAM-Loss(additive angular margin loss)。该网络首次将Transformer Encoder模块成功用于掌静脉图像全局特征提取,改进的BasicBlock使用深度超参数化卷积Do-Conv取代传统卷积Conv进行特征提取使提取的特征更加具有区分性,该模块还加入规一化的注意力机制NAM模块,通过应用权重稀疏性惩罚项抑制不显著性特征的权值来提取图像在通道和空间域上重要的细节特征。在手掌关键点定位、ROI提取、图像增强方面作了详细描述,在特征向量维度、AAM-Loss参数设置方面做了详细实验,在PolyU数据库和自建库SEPAD-PV数据库上进行消融实验测试,EER均达到了0,成功实现了最高识别率的突破。为了验证该网络的泛化性能,还在具有相似纹理特征的掌纹数据库Tongji和指静脉数据库SDUMLA上进行验证,EER远远优于其他主流算法,充分证明了提出算法的优越性。 展开更多
关键词 手掌静脉识别 Transformer编码模块 深度超参数化卷积(Do-Conv) 规一化注意力机制(NAM) 扩大决策边界的损失函数(AAM-Loss)
在线阅读 下载PDF
加权双向金字塔融合的肝脏肿瘤检测方法
12
作者 马金林 贺康康 +1 位作者 马自萍 欧阳轲 《北京航空航天大学学报》 2025年第11期3745-3758,共14页
针对肝脏肿瘤检测中多尺度特征表达能力不足的问题,提出一种融合重参数化卷积、加权双向特征金字塔和注意力机制的肝脏肿瘤CT图像检测方法。使用数据增强改善样本量较少的问题,提高模型的泛化能力;使用加权双向特征金字塔网络融合图像... 针对肝脏肿瘤检测中多尺度特征表达能力不足的问题,提出一种融合重参数化卷积、加权双向特征金字塔和注意力机制的肝脏肿瘤CT图像检测方法。使用数据增强改善样本量较少的问题,提高模型的泛化能力;使用加权双向特征金字塔网络融合图像的浅层与深层特征,提高多尺度特征的提取能力;在特征融合中引入无参数平均注意力模块,关注肝脏肿瘤的关键特征;使用重参数化卷积和边界框(SIoU)损失函数提高肿瘤的检测和定位能力。实验结果表明:所提方法在LT3DM和LiTS2017数据集上的平均精度均值(m AP)分别达到了92.9%和92.2%,比YOLOv5模型提高了2.3%和1.8%,相较于主流检测模型,所提方法具有更好的肝脏肿瘤检测能力。 展开更多
关键词 YOLOv5 加权双向特征金字塔 多尺度 无参数平均注意力模块 参数化卷积 SIoU
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部