期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Kolmogorov复杂性的垃圾图像分类模型 被引量:1
1
作者 邓蔚 程红蓉 +1 位作者 钱伟中 秦志光 《计算机应用研究》 CSCD 北大核心 2011年第4期1533-1535,共3页
为了进一步遏制图像型垃圾邮件的泛滥,首次提出了一种基于Kolmogorov复杂性的垃圾图像分类模型。该模型利用数据压缩技术,实现了对垃圾图像的有效分类。与目前主流垃圾图像分类方法相比,本模型既不需要提取图像中的文字,也不需要对图像... 为了进一步遏制图像型垃圾邮件的泛滥,首次提出了一种基于Kolmogorov复杂性的垃圾图像分类模型。该模型利用数据压缩技术,实现了对垃圾图像的有效分类。与目前主流垃圾图像分类方法相比,本模型既不需要提取图像中的文字,也不需要对图像特征进行定义和选择,而是一种无参数的分类方法。实验验证了本模型的有效性和鲁棒性,同时还表明,Kolmogorov复杂性在垃圾信息过滤中具有广阔的应用前景。 展开更多
关键词 垃圾图像过滤 柯尔莫哥洛夫复杂性 数据压缩 机器学习 无参数分类
在线阅读 下载PDF
Infrared aircraft few-shot classification method based on cross-correlation network
2
作者 HUANG Zhen ZHANG Yong GONG Jin-Fu 《红外与毫米波学报》 北大核心 2025年第1期103-111,共9页
In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This... In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method. 展开更多
关键词 infrared imaging aircraft classification few-shot learning parameter-free attention cross attention
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部