期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
蒙特卡罗无信息变量消除方法用于近红外光谱预测果品硬度和表面色泽的研究 被引量:27
1
作者 郝勇 孙旭东 +2 位作者 潘圆媛 高荣杰 刘燕德 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第5期1225-1229,共5页
近红外光谱(NIRS)分析方法用于梨的硬度和表面色泽的无损快速定量分析,提高了分析方法的预测精度,消除无信息建模变量对模型稳定性的影响。分别采用蒙特卡罗无信息变量消除(Monte Carlo unin-formative variables elimination,MC-UVE)... 近红外光谱(NIRS)分析方法用于梨的硬度和表面色泽的无损快速定量分析,提高了分析方法的预测精度,消除无信息建模变量对模型稳定性的影响。分别采用蒙特卡罗无信息变量消除(Monte Carlo unin-formative variables elimination,MC-UVE)和基于小波变换(wavelet transform,WT)的蒙特卡罗无信息变量消除(WT-MC-UVE)方法对梨的硬度和表面色泽的建模变量进行筛选。结果表明,对于硬度模型,采用WT-MC-UVE方法,210个变量可以得到和原始光谱(1 451个变量)近似的预测结果;对于表面色泽的预测模型,采用WT-MC-UVE方法后,建模变量减少为220,模型的预测均方根误差从1.06减小为0.90,预测相关系数从0.975提高为0.981。因此,WT-MC-UVE方法可以有效地选择建模变量,既能提高模型的稳定性,又能提高多元校正的预测精度。 展开更多
关键词 近红外光谱 硬度 表面色泽 蒙特卡罗 无信息变量消除
在线阅读 下载PDF
基于无信息变量消除法和连续投影算法的可见-近红外光谱技术白虾种分类方法研究 被引量:50
2
作者 吴迪 吴洪喜 +2 位作者 蔡景波 黄振华 何勇 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2009年第6期423-427,共5页
应用无信息变量消除法结合连续投影算法对可见-近红外光谱区进行有效波长的选择,选择后的波长作为输入变量建立最小二乘-支持向量机模型,对白虾属中三种典型种,脊尾白虾、秀丽白虾和东方白虾进行鉴别分类.实验采用Kennard-Stone算法选取... 应用无信息变量消除法结合连续投影算法对可见-近红外光谱区进行有效波长的选择,选择后的波长作为输入变量建立最小二乘-支持向量机模型,对白虾属中三种典型种,脊尾白虾、秀丽白虾和东方白虾进行鉴别分类.实验采用Kennard-Stone算法选取150个样本作为建模集,50个样本作为预测集,通过UVE-SPA优选了数值分别为392、431、517、551、595、627、676、734、760、861、943和1018 nm的12个波长为LS-SVM的输入变量,建立了白虾种分类模型.该模型对50个预测集样本检验的准确率达到了92.00%.结果表明,采用可见-近红外光谱对白虾种进行鉴别是可行的,UVE-SPA能够有效地进行波长选择,使LS-SVM模型获得最优的分类结果. 展开更多
关键词 可见-近红外光谱 无信息变量消除 连续投影算法 最小二乘-支持向量机
在线阅读 下载PDF
基于无信息变量消除法与岭极限学习机的新型变量选择方法:以CO气体浓度反演为例(英文) 被引量:4
3
作者 陈媛媛 王志斌 王召巴 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2017年第1期299-305,共7页
变量选择是光谱分析领域一个重要的组成部分。为了克服传统区间选择法的缺点与不足,基于无信息变量消除法和岭极限学习机提出一种新型的变量选择与评价方法。首先,利用无信息变量消除法剔除整个光谱区间中无信息的波长点;其次,为了解决... 变量选择是光谱分析领域一个重要的组成部分。为了克服传统区间选择法的缺点与不足,基于无信息变量消除法和岭极限学习机提出一种新型的变量选择与评价方法。首先,利用无信息变量消除法剔除整个光谱区间中无信息的波长点;其次,为了解决传统建模方法(偏最小二乘法、BP神经网络等)存在的共线性问题,采用岭极限学习机方法建立回归模型;最后,最佳的特征光谱波长点组合利用特征选择路径图和稀疏度-误差折中曲线进行确定。CO气体的浓度反演实验结果表明:(1)利用无信息变量消除法可以有效筛选出最能表征CO气体透过光谱的特征波长点;(2)岭极限学习机方法具有快速建模、避免共线性和高精度等优点(CO气体浓度反演模型的决定系数可达0.995);(3)特征选择路径图和稀疏度-误差折中曲线可以直观地帮助用户寻找出最佳的特征波长点组合。 展开更多
关键词 变量选择 无信息变量消除 岭极限学习机 特征选择路径 CO气体浓度反演
在线阅读 下载PDF
无信息变量消除法在糙米直链淀粉波长选择中的应用 被引量:7
4
作者 张巧杰 熊鸣 祁鲲 《农机化研究》 北大核心 2010年第11期202-205,共4页
为挑选信息含量大、与样品组成或性质相关性较强的光谱区域参与建模,以提高校正模型的精度,采用无信息变量消除法对糙米直链淀粉的近红外光谱进行分析。无信息变量消除法是基于PLS回归系数b建立起来的一种光谱区间选择方法,考虑了噪声... 为挑选信息含量大、与样品组成或性质相关性较强的光谱区域参与建模,以提高校正模型的精度,采用无信息变量消除法对糙米直链淀粉的近红外光谱进行分析。无信息变量消除法是基于PLS回归系数b建立起来的一种光谱区间选择方法,考虑了噪声和浓度矩阵的影响。结果表明:进行波长选择后,波长点数由1102减小到726,交叉验证预测值与标准值的相关系数R由0.9212提高到0.9654,交叉验证标准差SECV由2.4142减小到1.3725,预测标准差SEP由2.4572减小到2.2001,预测能力得到明显提高。 展开更多
关键词 直链淀粉 近红外光谱 无信息变量消除 波长选择
在线阅读 下载PDF
基于蒙特卡罗无信息变量消除的烟气指标预测 被引量:2
5
作者 门月 丁香乾 刘孝良 《现代电子技术》 2012年第24期82-84,共3页
使用近红外光谱(NIRS)分析方法对烟叶的CO、烟碱、焦油含量进行无损快速定量分析,可以提高分析方法的预测精度,消除无信息建模变量对模型稳定性的影响。在此以烟叶为研究对象,利用蒙特卡罗无信息变量消除方法(MC-UVE)对烟叶的近红外光... 使用近红外光谱(NIRS)分析方法对烟叶的CO、烟碱、焦油含量进行无损快速定量分析,可以提高分析方法的预测精度,消除无信息建模变量对模型稳定性的影响。在此以烟叶为研究对象,利用蒙特卡罗无信息变量消除方法(MC-UVE)对烟叶的近红外光谱进行了波段点的筛选,并利用筛选出的波段建立PLS校正模型。结果表明利用蒙特卡罗无信息变量消除方法可以有效选择建模变量,既克服了复杂样品各信息区间对PLS建模贡献率不一样的问题,又能提高模型的稳定性和多元校正的预测精度。 展开更多
关键词 近红外光谱 蒙特卡罗无信息变量消除 变量筛选 偏最小二乘法
在线阅读 下载PDF
基于无信息变量消除法的水稻种子发芽率测定 被引量:6
6
作者 曲歌 陈争光 张庆华 《江苏农业学报》 CSCD 北大核心 2019年第5期1015-1020,共6页
为了解决常规的水稻种子发芽率测定方法存在的试验周期长且操作繁琐等问题,实现水稻种子发芽率的快速检测。本研究以黑龙江省五常市五优稻四号粳稻种子为研究对象,首先将7组种子样本(每组60个样本,共计420个样本)置于温度为45℃,湿度为... 为了解决常规的水稻种子发芽率测定方法存在的试验周期长且操作繁琐等问题,实现水稻种子发芽率的快速检测。本研究以黑龙江省五常市五优稻四号粳稻种子为研究对象,首先将7组种子样本(每组60个样本,共计420个样本)置于温度为45℃,湿度为90%的环境中分别进行为期0d、1d、2d、3d、4d、5d、6d的不同时段的人工老化,然后采集每个水稻种子样本的光谱数据后进行发芽试验。对光谱数据使用蒙特卡洛交叉验证法进行异常样本剔除,并应用UVE法对全光谱数据进行特征波长选择,使光谱数据由全光谱的1845个数据点缩减为524个数据点,最后建立PLSR预测模型。所建模型的预测集决定系数R 2为0.8170、RMSEP为2.1830。试验结果表明,经UVE法降维后建立PLSR模型的各项参数均优于全光谱模型,因此,UVE特征波长选择算法为提高水稻种子发芽率测定模型的预测能力提供了一种新的途径。 展开更多
关键词 水稻种子 近红外光谱 蒙特卡洛交叉验证 无信息变量消除 发芽率
在线阅读 下载PDF
鸡蛋蛋白pH可见/近红外光谱在线检测信息变量提取研究 被引量:10
7
作者 刘燕德 彭彦颖 孙旭东 《江西农业大学学报》 CAS CSCD 北大核心 2010年第5期1075-1080,共6页
利用可见/近红外光谱在线检测鸡蛋品质中的蛋白pH,采用漫反射方式进行光谱采集。采用反向区间偏最小二乘法(BiPLS)和蒙特卡罗无信息变量消除法(MC-UVE)分别优化鸡蛋蛋白pH可见/近红外光谱的信息区间组合及筛选有效建模变量数。经过最优... 利用可见/近红外光谱在线检测鸡蛋品质中的蛋白pH,采用漫反射方式进行光谱采集。采用反向区间偏最小二乘法(BiPLS)和蒙特卡罗无信息变量消除法(MC-UVE)分别优化鸡蛋蛋白pH可见/近红外光谱的信息区间组合及筛选有效建模变量数。经过最优预处理方法一阶导数对光谱进行预处理校正后,BiPLS方法筛选的区间分隔最优数为25,对应信息区间为598.33~617.55nm、636.63~655.58nm、783.25~800.72nm和852.24~885.82nm。利用MC-UVE方法筛选出来的最佳建模变量数为250个,BiPLS模型的Rp为0.827和RMSEP值为0.094;MC-UVE-PLS模型的Rp为0.833和RMSEP值为0.086。结果表明利用蒙特卡罗无信息变量消除方法可以有效选择建模变量,既克服了复杂样品各信息区间对PLS建模贡献率不一样的问题,又能提高模型的稳定性和多元校正的预测精度。 展开更多
关键词 可见/近红外光谱 在线检测 蒙特卡罗无信息变量消除 蛋白pH
在线阅读 下载PDF
基于变量选择的蚕茧茧层量可见-近红外光谱无损检测 被引量:25
8
作者 黄凌霞 吴迪 +4 位作者 金航峰 赵丽华 何勇 金佩华 楼程富 《农业工程学报》 EI CAS CSCD 北大核心 2010年第2期231-236,共6页
以蚕茧茧层量为研究对象,研究了基于可见-近红外光谱技术的蚕茧茧层量无损检测方法。采用最小二乘支持向量机(least square-support vector machine,LS-SVM)建立可见-近红外光谱模型。采用无信息变量消除算法(uninformative variable el... 以蚕茧茧层量为研究对象,研究了基于可见-近红外光谱技术的蚕茧茧层量无损检测方法。采用最小二乘支持向量机(least square-support vector machine,LS-SVM)建立可见-近红外光谱模型。采用无信息变量消除算法(uninformative variable elimination,UVE)与连续投影算法(successive projections algorithm,SPA)相结合选取光谱有效波长。结果表明,基于UVE-SPA法进行变量选择,最终将原始光谱的600个光谱变量减少到了8个(673,937,963,982,989,992,995和1008nm)。基于此8个变量建立的LS-SVM模型得到了预测集的确定系数(Rp2)为0.5354,误差均方根(RMSEP)为0.0373的预测结果。表明可见-近红外光谱可以用于对蚕茧的茧层量进行无损检测,同时UVE-SPA是一种有效的光谱变量选择方法。 展开更多
关键词 近红外光谱 无损检测 模型分析 蚕茧 茧层量 无信息变量消除算法(UVE) 连续投影算法(SPA)
在线阅读 下载PDF
激光诱导击穿光谱联合UVE变量优选检测大豆油中的铬含量 被引量:7
9
作者 孙通 吴宜青 +2 位作者 刘秀红 莫欣欣 刘木华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第10期3341-3345,共5页
利用激光诱导击穿光谱(LIBS)技术对大豆油中的重金属Cr进行检测研究。以松木木片对重金属Cr进行富集,采用AvaSpec双通道高精度光谱仪在206.28-481.77nm波段范围内采集松木木片样本的LIBS光谱,利用无信息变量消除(UVE)方法筛选与重金... 利用激光诱导击穿光谱(LIBS)技术对大豆油中的重金属Cr进行检测研究。以松木木片对重金属Cr进行富集,采用AvaSpec双通道高精度光谱仪在206.28-481.77nm波段范围内采集松木木片样本的LIBS光谱,利用无信息变量消除(UVE)方法筛选与重金属Cr相关的波长变量,应用偏最小二乘(PLS)回归建立大豆油中重金属Cr的定标模型,并与单变量及全波段PLS定标模型进行比较。结果表明,相比单变量及全波段PLS定标模型,UVE-PLS定标模型的性能更优,其相关系数、校正均方根误差、交互验证均方根误差及预测均方根误差分别为0.990,0.045,0.050及0.054mg·g-1。经UVE变量筛选后,UVE-PLS定标模型所用的波长变量数仅为全波段PLS的2%。由此可见,UVE是一种有效的波长变量筛选方法,能有效筛选出与重金属Cr相关的波长变量。 展开更多
关键词 激光诱导击穿光谱 重金属铬 无信息变量消除 偏最小二乘 大豆油
在线阅读 下载PDF
提取近红外光谱有效变量快速检测猪肉挥发性盐基氮 被引量:6
10
作者 刘飞 邹昊 +4 位作者 田寒友 汤介兰 刘文营 李家鹏 乔晓玲 《肉类研究》 北大核心 2015年第9期25-29,共5页
以市售新鲜冷藏(4℃)猪肉为研究对象,采用蒙特卡洛-无信息变量消除算法和连续投影算法对原始近红外光谱的800个波长变量进行提取,共筛选出与挥发性盐基氮含量直接和间接相关的有效波长变量36个,并采用偏最小二乘法构建预测模型,验证集... 以市售新鲜冷藏(4℃)猪肉为研究对象,采用蒙特卡洛-无信息变量消除算法和连续投影算法对原始近红外光谱的800个波长变量进行提取,共筛选出与挥发性盐基氮含量直接和间接相关的有效波长变量36个,并采用偏最小二乘法构建预测模型,验证集的相关系数和标准偏差分别为0.876 4和1.205 7 mg/100 g。 展开更多
关键词 猪肉 蒙特卡洛-无信息变量消除算法 连续投影算法 挥发性盐基氮
在线阅读 下载PDF
变量筛选方法结合局部线性嵌入理论用于近红外光谱定量模型优化 被引量:1
11
作者 郝勇 孙旭东 杨强 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第12期3208-3212,共5页
变量筛选策略结合局部线性嵌入(local linear embedding,LLE)理论用于近红外光谱(near infrared spectroscopy,NIRS)定量模型优化。蒙特卡罗无信息变量消除方法(monte carlo uninformation variable elimination,MCUVE)和连续投影算法(s... 变量筛选策略结合局部线性嵌入(local linear embedding,LLE)理论用于近红外光谱(near infrared spectroscopy,NIRS)定量模型优化。蒙特卡罗无信息变量消除方法(monte carlo uninformation variable elimination,MCUVE)和连续投影算法(successive projections algorithm,SPA)以及两者结合的变量筛选策略用于NIRS冗余变量的剔除;偏最小二乘回归(partial least squares regression,PLSR)和LLE-PLSR用于复杂样品光谱定量模型的构建。结果表明:MCUVE方法既能有效的提取信息变量,同时可以提高模型的预测精度;LLE-PLSR可以得到比PLSR方法更加准确的定量分析模型;MCUVE结合LLE-PLSR是一种有效的光谱定量分析方法。 展开更多
关键词 近红外光谱 蒙特卡罗无信息变量消除 连续投影算法 局部线性嵌入
在线阅读 下载PDF
共线双脉冲LIBS结合变量筛选定量检测腐霉利含量 被引量:1
12
作者 甘兰萍 孙通 +1 位作者 刘津 刘木华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第2期584-588,共5页
腐霉利(Procymidone)作为一种新型的农产品杀菌剂,具有防止农产品受病虫害的作用,但其在施药过程中容易使用不当危害环境和人的健康。为加强对腐霉利农药的检测,本研究应用共轴双脉冲激光诱导击穿光谱技术(LIBS)对溶液中的腐霉利含量进... 腐霉利(Procymidone)作为一种新型的农产品杀菌剂,具有防止农产品受病虫害的作用,但其在施药过程中容易使用不当危害环境和人的健康。为加强对腐霉利农药的检测,本研究应用共轴双脉冲激光诱导击穿光谱技术(LIBS)对溶液中的腐霉利含量进行定量检测研究。为配置不同浓度的腐霉利样品,将有效成分含量为98%腐霉利粉末与二甲苯按照不同比例混合并完全溶解。由于液体样品在激光击打的过程中容易将液体溅出,具有一定的危险性。因此,实验将液体样品转化为固体样品,利用石墨吸附腐霉利溶液,然后采用八通道高精度光谱仪采集样品的LIBS光谱,并利用不同预处理方法对光谱数据进行预处理。为提高腐霉利的检测精度,选择氯元素信号最强的两通道(744.555~935.843,893.107~1 057.058nm)光谱数据,分别采用归一化函数(normalization)、基线校正(baseline correction)、标准正态变量变换(SNV)、多元散射校正(MSC)方法进行光谱预处理,并应用PLS方法建模。通过比较各预处理方法数据后,综合考虑,选择Baseline方法为最佳预处理方法。在baseline预处理方法的基础上使用无信息变量消除算法(UVE)联合竞争性自适应重加权采样(CARS)算法剔除无信息的波长变量,筛选与腐霉利相关的重要波长变量,最后应用偏最小二乘回归建立溶液中腐霉利含量的定量预测模型。建模结果表明:经光谱预处理和UVE-CARS方法优选后,可将原4096个波长变量个数减少至13个,变量压缩率为99.68%;经UVE-CARS变量优选后建立的PLS模型的校正集的决定系数和均方根误差分别为0.990 5和0.66,预测集的决定系数和均方根误差分别为0.990 3和0.67,其模型性能优于原始光谱建立的PLS模型。结果表明,利用共轴双脉冲LIBS技术定量检测溶液中的腐霉利含量具有一定的可行性,经UVE和CARS方法筛选后可以有效提取腐霉利的特征变量及相关影响变量,剔除冗余及噪声影响变量,简化定量分析模型且提高了定量分析模型的稳定性。 展开更多
关键词 光谱学 激光诱导击穿光谱 腐霉利 竞争性自适应重加权采样 无信息变量消除算法
在线阅读 下载PDF
基于可见-近红外光谱技术的水稻穗颈瘟染病程度分级方法研究 被引量:22
13
作者 吴迪 曹芳 +3 位作者 张浩 孙光明 冯雷 何勇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第12期3295-3299,共5页
采用Vis-NIR技术对水稻穗颈瘟染病程度分级方法进行了研究。分别基于原始光谱,变量标准化(SNV)预处理后和多元散射校正(MSC)预处理后的光谱,应用无信息变量消除法(UVE)结合连续投影算法(SPA)对Vis-NIR光谱区进行有效波长的选择。选择后... 采用Vis-NIR技术对水稻穗颈瘟染病程度分级方法进行了研究。分别基于原始光谱,变量标准化(SNV)预处理后和多元散射校正(MSC)预处理后的光谱,应用无信息变量消除法(UVE)结合连续投影算法(SPA)对Vis-NIR光谱区进行有效波长的选择。选择后的波长作为输入变量建立最小二乘-支持向量机(LS-SVM)模型。结果表明SNV-UVE-SPA建立的LS-SVM模型预测效果最好。通过SNV-UVE-SPA从全波段600个波长中选择了6个最能够反应光谱信息的波长(459,546,569,590,775和981nm)。SNV-UVE-SPA-LS-SVM组合模型对预测集样本预测得到的确定系数(Rp2),预测集的预测标准差(RMSEP)和剩余预测偏差(RPD)分别达到了0.979,0.507和6.580。结果表明,采用Vis-NIR光谱技术对水稻穗颈瘟染病程度进行分级是可行的。通过UVE-SPA得到的有效波长能够很好地代替全波长。 展开更多
关键词 Vis-NIR光谱 水稻穗颈瘟 无信息变量消除 连续投影算法 变量选择
在线阅读 下载PDF
建立近红外特征波长模型快速测定羊草常规营养成分的研究 被引量:13
14
作者 陈积山 朱瑞芬 +2 位作者 张强 杜优颖 孔晓蕾 《草地学报》 CAS CSCD 北大核心 2019年第4期867-873,共7页
本研究采用近红外光谱法快速测定羊草(Leymus chinensis)中的常规营养成分,利用无信息变量消除法(unknown variable elimination,UVE)、随机蛙算法(random frog algorithm,RF)结合偏最小二乘法(partial least squares,PLS)建立了羊草品... 本研究采用近红外光谱法快速测定羊草(Leymus chinensis)中的常规营养成分,利用无信息变量消除法(unknown variable elimination,UVE)、随机蛙算法(random frog algorithm,RF)结合偏最小二乘法(partial least squares,PLS)建立了羊草品质测定模型,有效降低了冗余无信息变量,提高了模型的测量精度和稳定性。研究发现利用UVE-PLS筛选建立的羊草品质测定模型优于全光谱PLS和RF-PLS筛选建立的模型;UVE-PLS模型显著降低了交叉验证均方根误差和预测均方根误差,提高了校正集决定系数、交叉验证决定系数及预测集决定系数。研究表明UVE-PLS模型在测定羊草中的水分、粗蛋白、酸性洗涤纤维和中性洗涤纤维是可行的,校正集决定系数和预测集决定系数95%~98%。 展开更多
关键词 羊草 常规营养成分 近红外特征波长 无信息变量消除 随机蛙跳
在线阅读 下载PDF
基于PLS-LDA和拉曼光谱快速定性识别食用植物油 被引量:17
15
作者 吴静珠 石瑞杰 +2 位作者 陈岩 刘翠玲 徐云 《食品工业科技》 CAS CSCD 北大核心 2014年第6期55-58,共4页
以6种食用油共计23个样本为分析对象,采用偏最小二乘线性判别分析法(PLS-LDA)和拉曼光谱进行单一种类(橄榄油、花生油和玉米油)食用油快速定性检测,通过自适应迭代惩罚最小二乘法(airPLS)对拉曼信号进行背景扣除,以及蒙特卡洛无信息变... 以6种食用油共计23个样本为分析对象,采用偏最小二乘线性判别分析法(PLS-LDA)和拉曼光谱进行单一种类(橄榄油、花生油和玉米油)食用油快速定性检测,通过自适应迭代惩罚最小二乘法(airPLS)对拉曼信号进行背景扣除,以及蒙特卡洛无信息变量消除法筛选波长变量,不但有效减少了波长点数,降低了建模运算量,而且提高了单一种类食用油的识别率,使得总体识别率均高于90%,并在此基础上进一步提出了采用PLS-LDA进行多种类食用油识别的检测流程。实验结果表明PLS-LDA在食用油定性识别检测中具有较好的应用前景和可行性,该方法也可为定性检测食品及农产品品质提供借鉴。 展开更多
关键词 偏最小二乘线性判别分析法 拉曼光谱 食用植物油 蒙特卡洛无信息变量消除
在线阅读 下载PDF
基于高光谱成像分析的冬枣微观损伤识别 被引量:18
16
作者 魏新华 吴姝 +1 位作者 范晓冬 黄嘉宝 《农业机械学报》 EI CAS CSCD 北大核心 2015年第3期242-246,共5页
为减少微观损伤引起的储藏腐烂损失,延长冬枣的储藏期,提高冬枣的储藏效益,以山东沾化冬枣为研究对象,利用高光谱成像系统采集轻微损伤发生不到1 h的冬枣损伤部位的高光谱图像,得到波长在871~1 766 nm范围内的256幅高光谱分量图像。结... 为减少微观损伤引起的储藏腐烂损失,延长冬枣的储藏期,提高冬枣的储藏效益,以山东沾化冬枣为研究对象,利用高光谱成像系统采集轻微损伤发生不到1 h的冬枣损伤部位的高光谱图像,得到波长在871~1 766 nm范围内的256幅高光谱分量图像。结合无信息变量消除法及相关系数法进行特征波长筛选,剔除不敏感波段,选取了944、1 035、1 187、1 376 nm 4个特征波长。对以上4个特征波长对应的分量图像进行主成分分析,选择第1主成分图像作为待分割图像,对其进行灰度变换等图像预处理,并运用自适应阈值分割法对其进行图像分割,实现了轻微损伤区域的有效识别。对100个轻微损伤冬枣样本的识别试验结果表明,所提方法的正确识别率为98%。 展开更多
关键词 冬枣 损伤检测 高光谱成像 无信息变量消除 相关系数
在线阅读 下载PDF
成熟期梨可溶性固形物含量的近红外漫反射光谱无损检测 被引量:9
17
作者 王铭海 郭文川 +1 位作者 谷静思 刘卉 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2013年第12期113-119,共7页
【目的】研究成熟期梨可溶性固形物含量的近红外漫反射光谱无损检测技术,为及时、准确地掌握成熟期梨果实的内部品质特性及田间管理、适时采收、合理储藏提供依据。【方法】基于近红外漫反射光谱检测技术分别建立了成熟期砀山酥梨可溶... 【目的】研究成熟期梨可溶性固形物含量的近红外漫反射光谱无损检测技术,为及时、准确地掌握成熟期梨果实的内部品质特性及田间管理、适时采收、合理储藏提供依据。【方法】基于近红外漫反射光谱检测技术分别建立了成熟期砀山酥梨可溶性固形物含量的偏最小二乘(PLS)、广义回归神经网络(GRNN)和偏最小二乘支持向量机动态预测模型(LSSVM),并综合评价了无信息变量消除法(UVE)优选有效特征波数对于简化模型、提高预测性能的影响。【结果】UVE算法能够很好地提高建模效率、有效改善GRNN和LSSVM模型预测精度,而对PLS分析模型效果不明显。3种模型中,LSSVM模型比GRNN和PLS模型具有明显优势,其中UVE-LSSVM模型具有最佳预测精度和适用性,其校正相关系数(Rc)为0.988,校正均方根误差(RMSEC)为0.074,预测相关系数(Rp)为0.922,预测均方根误差(RMSEP)为0.162。【结论】基于近红外光谱技术的UVE-LSSVM模型可用于成熟期梨可溶性固形物含量的无损检测。 展开更多
关键词 近红外光谱 成熟期 可溶性固形物含量 偏最小二乘支持向量机 无信息变量消除
在线阅读 下载PDF
紫外可见光谱的水产养殖水体有机物浓度快速检测研究 被引量:5
18
作者 曹泓 屈稳太 +3 位作者 杨祥龙 贾生尧 王春龙 鲁琛 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第11期3015-3019,共5页
应用紫外可见(ultraviolet/visible,UV/Vis)光谱技术对表征水产养殖水体中有机物浓度的指标化学需氧量(chemical oxygen demand,COD)进行快速测量,对采集到的135份甲鱼养殖水样进行UV/Vis波段全光谱扫描,采用无信息变量消除(uninformati... 应用紫外可见(ultraviolet/visible,UV/Vis)光谱技术对表征水产养殖水体中有机物浓度的指标化学需氧量(chemical oxygen demand,COD)进行快速测量,对采集到的135份甲鱼养殖水样进行UV/Vis波段全光谱扫描,采用无信息变量消除(uninformative variable elimination,UVE)和连续投影算法(successive projections algorithm,SPA)相结合的变量选择算法选取全波段光谱中的特征波长,从201个UV/Vis光谱变量中选取了7个特征波长,只占全波段光谱变量的3.48%,降低了建模的时间和模型的复杂度。结合最小二乘支持向量机(least-square support vector machine,LS-SVM)算法进行COD预测建模,结果表明:使用特征波长建模的预测效果(相关系数r(correlation coefficient)=0.89,预测均方根误差(root mean square error of prediction,RMSEP)=15.46mg·L-1)好于使用全波段光谱建模的预测效果(r=0.88,RMSEP=15.71mg·L-1)。使用UVE-SPA变量选择算法获取UV/Vis光谱特征波长,结合LS-SVM建模,可以快速、准确的测量水产养殖水体中的COD浓度,为进一步实现水产养殖水质的在线检测以及其他水质参数的快速测定奠定了基础。 展开更多
关键词 紫外可见光谱 水产养殖 有机物 连续投影算法 无信息变量消除 最小二乘-支持向量机
在线阅读 下载PDF
近红外光谱法分析油页岩含油率中波长选择方法的研究 被引量:7
19
作者 赵振英 林君 +1 位作者 张福东 李军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第11期2948-2952,共5页
波长选择是光谱建模分析的重要步骤。研究了近红外光谱法分析油页岩含油率过程中的波长选择方法,用以剔除光谱数据中的冗余信息和干扰信息,提高分析模型的建模效率和预测能力。分别采用相关系数法(CC)、移动窗口偏最小二乘法(MWPLS)和... 波长选择是光谱建模分析的重要步骤。研究了近红外光谱法分析油页岩含油率过程中的波长选择方法,用以剔除光谱数据中的冗余信息和干扰信息,提高分析模型的建模效率和预测能力。分别采用相关系数法(CC)、移动窗口偏最小二乘法(MWPLS)和无信息变量消除法(UVE)对油页岩近红外漫反射光谱数据的波长区间进行了选择,研究了不同阈值、窗口宽度和噪声矩阵对上述方法的影响,建立了所选择波长处的反射率数据和样品含油率标准值间的偏最小二乘(PLS)分析模型,比较了上述方法的选择效果。结果表明:与使用全谱数据建模相比,采用上述方法筛选过的光谱数据均能提高模型的建模效率和预测能力,其中经UVE法筛选后的光谱数据仅占全谱数据总数的22.8%,模型的RMSECV却降低了9.3%,RMSEP降低了4.5%。 展开更多
关键词 油页岩 近红外光谱法 波长选择 相关系数法 移动窗口偏最小二乘法 无信息变量消除
在线阅读 下载PDF
一种基于紫外可见光谱的多金属离子浓度检测方法 被引量:5
20
作者 朱红求 陈俊名 +2 位作者 尹冬航 李勇刚 阳春华 《化工学报》 EI CAS CSCD 北大核心 2017年第3期998-1004,共7页
针对Cu^(2+),Co^(2+),Zn^(2+) 3种金属离子混合溶液的紫外可见分光光度法(UV-Vis)光谱重叠而难以检测的问题,提出了一种基于改进型Monte Carle无信息变量消除(MC-UVE)方法的多金属离子浓度检测方法。在MC-UVE的基础上引入指数衰减函数(E... 针对Cu^(2+),Co^(2+),Zn^(2+) 3种金属离子混合溶液的紫外可见分光光度法(UV-Vis)光谱重叠而难以检测的问题,提出了一种基于改进型Monte Carle无信息变量消除(MC-UVE)方法的多金属离子浓度检测方法。在MC-UVE的基础上引入指数衰减函数(EDF),提出了一种改进的MC-UVE方法,并基于该方法对料液的紫外-可见光谱进行波长筛选;然后,利用筛选出的波长建立PLS模型并进行各组分浓度检测计算;最后,分别对基于MC-UVE方法和改进型MC-UVE方法 PLS模型的计算结果进行对比分析。结果表明:改进型MC-UVE方法可筛选出对模型贡献度高的变量,基于该变量选择方法的PLS模型精度高。 展开更多
关键词 紫外可见光谱 MONTE Carle无信息变量消除 变量筛选 重叠光谱分离 偏最小二乘法 光化学 计算化学
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部