针对全波段光谱技术的生鲜猪肉综合品质快速无损分类存在光谱数据量大、样本数量较少时分类准确率较低等缺点。该文提出了一种基于偏最小二乘(partial least squares,PLS)投影分析算法和支持向量机的生鲜猪肉综合品质分类器。利用基于...针对全波段光谱技术的生鲜猪肉综合品质快速无损分类存在光谱数据量大、样本数量较少时分类准确率较低等缺点。该文提出了一种基于偏最小二乘(partial least squares,PLS)投影分析算法和支持向量机的生鲜猪肉综合品质分类器。利用基于偏最小二乘投影分析算法对全波段光谱数据进行数据降维,选取了13个特征波长。利用粒子群优化算法优化支持向量机惩罚参数和径向基核函数参数,优化后二者最优为4.939和0.01。利用选取的特征波长和优化后的参数建立了生鲜猪肉综合品质支持向量分类器。研究结果表明,分类器对训练集中白肌肉(pale,soft and exudative,PSE)、正常肉(reddish-pink,firm and non-exudative,RFN)和黑干肉(dark,firm and dry,DFD)的回判识别率分别为为88.46%、94.11%和92.31%;测试集中PSE、RFN和DFD预测正确率分别为84.62%、94.11%和84.62%。该分类器满足模型简单、预测准确率高等优点,为生鲜猪肉综合品质在线分级提供参考。展开更多
为了科学预测试验装备修理成本,提高维修经费决策质量,引入偏最小二乘回归分析(Partial Least Squares Regression,PLSR)对试验装备修理成本进行预测。针对试验装备修理成本小样本、贫数据、特征量相关性强的不利条件,构建预测模型;基...为了科学预测试验装备修理成本,提高维修经费决策质量,引入偏最小二乘回归分析(Partial Least Squares Regression,PLSR)对试验装备修理成本进行预测。针对试验装备修理成本小样本、贫数据、特征量相关性强的不利条件,构建预测模型;基于以往数次大修相关数据,预测试验专用装备使用期的某次大修成本。同时,为保持模型的稳健性,提高模型解释能力和预测精确度,尝试利用变量投影重要性分析对模型进行优化,取得了较好的效果。实例证明,该方法不仅能在多变量间存在严重多重相关性情况下建立模型,而且能够有效筛选与因变量关系不大的自变量,简化输入样本集。展开更多
采用全谱建立多元校正模型时,通常计算量大,模型不够稳健,而且模型的预测精度往往也不能达到最优。文章介绍一种新的波长选择方法:采用连续投影算法(successive projections algorithm),并将其集成偏最小二乘(partial least squares)多...采用全谱建立多元校正模型时,通常计算量大,模型不够稳健,而且模型的预测精度往往也不能达到最优。文章介绍一种新的波长选择方法:采用连续投影算法(successive projections algorithm),并将其集成偏最小二乘(partial least squares)多变量校正技术构成SPA-PLS方法,用于谷物小麦近红外光谱波长优化选择及其与水分含量的定量分析。结果表明:在经SPA算法后,光谱波数可削减97.72%,后继的定量校正模型结构得到显著简化,模型的稳健性也大大增强;同时,被选取的波长物理意义明确,模型的解释能力增强,而模型的预测性能也与GA-PLS方法相当。展开更多
文摘针对全波段光谱技术的生鲜猪肉综合品质快速无损分类存在光谱数据量大、样本数量较少时分类准确率较低等缺点。该文提出了一种基于偏最小二乘(partial least squares,PLS)投影分析算法和支持向量机的生鲜猪肉综合品质分类器。利用基于偏最小二乘投影分析算法对全波段光谱数据进行数据降维,选取了13个特征波长。利用粒子群优化算法优化支持向量机惩罚参数和径向基核函数参数,优化后二者最优为4.939和0.01。利用选取的特征波长和优化后的参数建立了生鲜猪肉综合品质支持向量分类器。研究结果表明,分类器对训练集中白肌肉(pale,soft and exudative,PSE)、正常肉(reddish-pink,firm and non-exudative,RFN)和黑干肉(dark,firm and dry,DFD)的回判识别率分别为为88.46%、94.11%和92.31%;测试集中PSE、RFN和DFD预测正确率分别为84.62%、94.11%和84.62%。该分类器满足模型简单、预测准确率高等优点,为生鲜猪肉综合品质在线分级提供参考。
文摘为了科学预测试验装备修理成本,提高维修经费决策质量,引入偏最小二乘回归分析(Partial Least Squares Regression,PLSR)对试验装备修理成本进行预测。针对试验装备修理成本小样本、贫数据、特征量相关性强的不利条件,构建预测模型;基于以往数次大修相关数据,预测试验专用装备使用期的某次大修成本。同时,为保持模型的稳健性,提高模型解释能力和预测精确度,尝试利用变量投影重要性分析对模型进行优化,取得了较好的效果。实例证明,该方法不仅能在多变量间存在严重多重相关性情况下建立模型,而且能够有效筛选与因变量关系不大的自变量,简化输入样本集。
文摘采用全谱建立多元校正模型时,通常计算量大,模型不够稳健,而且模型的预测精度往往也不能达到最优。文章介绍一种新的波长选择方法:采用连续投影算法(successive projections algorithm),并将其集成偏最小二乘(partial least squares)多变量校正技术构成SPA-PLS方法,用于谷物小麦近红外光谱波长优化选择及其与水分含量的定量分析。结果表明:在经SPA算法后,光谱波数可削减97.72%,后继的定量校正模型结构得到显著简化,模型的稳健性也大大增强;同时,被选取的波长物理意义明确,模型的解释能力增强,而模型的预测性能也与GA-PLS方法相当。