Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization mode...Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.展开更多
The optimal path planning for fixed-wing unmanned aerial vehicles(UAVs) in multi-target surveillance tasks(MTST) in the presence of wind is concerned.To take into account the minimal turning radius of UAVs,the Dubins ...The optimal path planning for fixed-wing unmanned aerial vehicles(UAVs) in multi-target surveillance tasks(MTST) in the presence of wind is concerned.To take into account the minimal turning radius of UAVs,the Dubins model is used to approximate the dynamics of UAVs.Based on the assumption,the path planning problem of UAVs in MTST can be formulated as a Dubins traveling salesman problem(DTSP).By considering its prohibitively high computational cost,the Dubins paths under terminal heading relaxation are introduced,which leads to significant reduction of the optimization scale and difficulty of the whole problem.Meanwhile,in view of the impact of wind on UAVs' paths,the notion of virtual target is proposed.The application of the idea successfully converts the Dubins path planning problem from an initial configuration to a target in wind into a problem of finding the minimal root of a transcendental equation.Then,the Dubins tour is derived by using differential evolution(DE) algorithm which employs random-key encoding technique to optimize the visiting sequence of waypoints.Finally,the effectiveness and efficiency of the proposed algorithm are demonstrated through computational experiments.Numerical results exhibit that the proposed algorithm can produce high quality solutions to the problem.展开更多
Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do no...Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.展开更多
基金Project(2009AA11Z220)supported by National High Technology Research and Development Program of ChinaProjects(61070112,61070116)supported by the National Natural Science Foundation of China+1 种基金Project(2012LLYJTJSJ077)supported by the Ministry of Public Security of ChinaProject(KYQD14003)supported by Tianjin University of Technology and Education,China
文摘Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.
基金Project(61120106010)supported by the Projects of Major International(Regional)Joint Research Program Nature Science Foundation of ChinaProject(61304215,61203078)supported by National Natural Science Foundation of China+1 种基金Project(2013000704)supported by the Beijing Outstanding Ph.D.Program Mentor,ChinaProject(61321002)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘The optimal path planning for fixed-wing unmanned aerial vehicles(UAVs) in multi-target surveillance tasks(MTST) in the presence of wind is concerned.To take into account the minimal turning radius of UAVs,the Dubins model is used to approximate the dynamics of UAVs.Based on the assumption,the path planning problem of UAVs in MTST can be formulated as a Dubins traveling salesman problem(DTSP).By considering its prohibitively high computational cost,the Dubins paths under terminal heading relaxation are introduced,which leads to significant reduction of the optimization scale and difficulty of the whole problem.Meanwhile,in view of the impact of wind on UAVs' paths,the notion of virtual target is proposed.The application of the idea successfully converts the Dubins path planning problem from an initial configuration to a target in wind into a problem of finding the minimal root of a transcendental equation.Then,the Dubins tour is derived by using differential evolution(DE) algorithm which employs random-key encoding technique to optimize the visiting sequence of waypoints.Finally,the effectiveness and efficiency of the proposed algorithm are demonstrated through computational experiments.Numerical results exhibit that the proposed algorithm can produce high quality solutions to the problem.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Video processing is one challenge in collecting vehicle trajectories from unmanned aerial vehicle(UAV) and road boundary estimation is one way to improve the video processing algorithms. However, current methods do not work well for low volume road, which is not well-marked and with noises such as vehicle tracks. A fusion-based method termed Dempster-Shafer-based road detection(DSRD) is proposed to address this issue. This method detects road boundary by combining multiple information sources using Dempster-Shafer theory(DST). In order to test the performance of the proposed method, two field experiments were conducted, one of which was on a highway partially covered by snow and another was on a dense traffic highway. The results show that DSRD is robust and accurate, whose detection rates are 100% and 99.8% compared with manual detection results. Then, DSRD is adopted to improve UAV video processing algorithm, and the vehicle detection and tracking rate are improved by 2.7% and 5.5%,respectively. Also, the computation time has decreased by 5% and 8.3% for two experiments, respectively.