为了减少土壤背景带来的干扰,更加准确、高效的获取无人机热红外图像中的玉米冠层温度,进而快速反演玉米地土壤含水率,以4种水分梯度处理的拔节期玉米为研究对象,借助无人机可见光和热红外图像,采用RGRI指数法、Otsu阈值法和不剔除土壤...为了减少土壤背景带来的干扰,更加准确、高效的获取无人机热红外图像中的玉米冠层温度,进而快速反演玉米地土壤含水率,以4种水分梯度处理的拔节期玉米为研究对象,借助无人机可见光和热红外图像,采用RGRI指数法、Otsu阈值法和不剔除土壤背景3种处理方法提取热红外图像中玉米冠层温度信息,计算作物水分胁迫指数(Crop water stress index,CWSI)并用于反演不同水分梯度处理下玉米地不同深度的土壤含水率,基于3种方法获得的CWSI分别记为CWSIRGRI、CWSIOtsu、CWSIsc。结果表明:(1)基于RGRI指数法获取的玉米冠层温度与实测冠层温度的相关性最高(R2均大于0.8;RMSE均小于1℃),Otsu方法次之,不剔除土壤背景方法效果最差。(2)在整个拔节期,CWSIRGRI反演土壤含水率效果最好(R2均大于0.5,P<0.01;效果显著),CWSIOtsu次之、CWSIsc反演效果最差。(3)选取CWSIRGRI为最优CWSI指标,其在玉米拔节期5个土壤深度内的R2呈现先上升后下降的趋势且都在0~30 cm深度内达到最大值。因此,基于RGRI指数法建立的CWSIRGRI可以作为反演玉米地土壤含水率的有效指标。展开更多
Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate ...Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.展开更多
文摘为了减少土壤背景带来的干扰,更加准确、高效的获取无人机热红外图像中的玉米冠层温度,进而快速反演玉米地土壤含水率,以4种水分梯度处理的拔节期玉米为研究对象,借助无人机可见光和热红外图像,采用RGRI指数法、Otsu阈值法和不剔除土壤背景3种处理方法提取热红外图像中玉米冠层温度信息,计算作物水分胁迫指数(Crop water stress index,CWSI)并用于反演不同水分梯度处理下玉米地不同深度的土壤含水率,基于3种方法获得的CWSI分别记为CWSIRGRI、CWSIOtsu、CWSIsc。结果表明:(1)基于RGRI指数法获取的玉米冠层温度与实测冠层温度的相关性最高(R2均大于0.8;RMSE均小于1℃),Otsu方法次之,不剔除土壤背景方法效果最差。(2)在整个拔节期,CWSIRGRI反演土壤含水率效果最好(R2均大于0.5,P<0.01;效果显著),CWSIOtsu次之、CWSIsc反演效果最差。(3)选取CWSIRGRI为最优CWSI指标,其在玉米拔节期5个土壤深度内的R2呈现先上升后下降的趋势且都在0~30 cm深度内达到最大值。因此,基于RGRI指数法建立的CWSIRGRI可以作为反演玉米地土壤含水率的有效指标。
文摘Infrared small target detection is a common task in infrared image processing.Under limited computa⁃tional resources.Traditional methods for infrared small target detection face a trade-off between the detection rate and the accuracy.A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃posed for the YOLOv5s model.This method introduces an additional small target detection head and replaces the original Intersection over Union(IoU)metric with Normalized Wasserstein Distance(NWD),while considering both the detection accuracy and the detection speed of infrared small targets.Experimental results demonstrate that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU,while reach⁃ing a maximum effective detection accuracy of 91.9 AP@0.5,effectively improving the efficiency of infrared small target detection under resource-constrained conditions.