针对无人机视角下的目标存在多尺度、目标小、被遮挡与背景复杂等问题,提出了一种基于动态样本注意力尺度序列的YOLOv8改进算法BDAD-YOLO。通过引入BiFormer的思想来改造原模型骨干结构,提高模型对关键信息的关注度,更好地保留目标细粒...针对无人机视角下的目标存在多尺度、目标小、被遮挡与背景复杂等问题,提出了一种基于动态样本注意力尺度序列的YOLOv8改进算法BDAD-YOLO。通过引入BiFormer的思想来改造原模型骨干结构,提高模型对关键信息的关注度,更好地保留目标细粒度细节信息。由于目标存在大小、位置等多变性,传统卷积并不能很好地处理这一情况,因此基于DCN(deformable convolutional network)的思想,设计了一种可以增强对小目标特征提取的C2_DCf模块,从而进一步提高颈部网络中小目标层对特征信息的融合。提出一种基于动态样本的注意力尺度序列融合框架AFD(attention-scale sequence fusion framework based on dynamic samples),使用轻量化动态点采样并通过融合不同尺度的特征图来增强网络提取多尺度信息的能力。使用WIoU损失函数,改善小目标低质量数据对梯度的不利影响,以加快网络收敛速度。实验结果表明,在VisDrone数据集中的val集与test集上平均精度(mAP@0.5)分别提升了4.6个百分点、3.7个百分点,在DOTA数据集上平均精度(mAP@0.5)提升了2.4个百分点,证明了改进算法的有效性和普适性。展开更多
针对无人机航拍图像中存在小目标、目标遮挡、背景复杂的问题,提出一种基于高效特征提取和大感受野的目标检测网络(efficient feature and large receptive field network,EFLF-Net)。通过优化检测层架构降低小目标漏检率;在主干网络融...针对无人机航拍图像中存在小目标、目标遮挡、背景复杂的问题,提出一种基于高效特征提取和大感受野的目标检测网络(efficient feature and large receptive field network,EFLF-Net)。通过优化检测层架构降低小目标漏检率;在主干网络融合新的构建模块以提升特征提取效率;引入内容感知特征重组模块和大型选择性核网络,增强颈部网络对遮挡目标的上下文感知能力;采用Wise-IoU损失函数优化边界框回归稳定性。在VisDrone2019数据集上的实验结果表明,EFLF-Net较基准模型在平均精度上提高了5.2%。与已有代表性的目标检测算法相比,该方法对存在小目标、目标相互遮挡和复杂背景的无人机航拍图像有更好的检测效果。展开更多
文摘针对无人机视角下的目标存在多尺度、目标小、被遮挡与背景复杂等问题,提出了一种基于动态样本注意力尺度序列的YOLOv8改进算法BDAD-YOLO。通过引入BiFormer的思想来改造原模型骨干结构,提高模型对关键信息的关注度,更好地保留目标细粒度细节信息。由于目标存在大小、位置等多变性,传统卷积并不能很好地处理这一情况,因此基于DCN(deformable convolutional network)的思想,设计了一种可以增强对小目标特征提取的C2_DCf模块,从而进一步提高颈部网络中小目标层对特征信息的融合。提出一种基于动态样本的注意力尺度序列融合框架AFD(attention-scale sequence fusion framework based on dynamic samples),使用轻量化动态点采样并通过融合不同尺度的特征图来增强网络提取多尺度信息的能力。使用WIoU损失函数,改善小目标低质量数据对梯度的不利影响,以加快网络收敛速度。实验结果表明,在VisDrone数据集中的val集与test集上平均精度(mAP@0.5)分别提升了4.6个百分点、3.7个百分点,在DOTA数据集上平均精度(mAP@0.5)提升了2.4个百分点,证明了改进算法的有效性和普适性。
文摘针对无人机航拍图像中存在小目标、目标遮挡、背景复杂的问题,提出一种基于高效特征提取和大感受野的目标检测网络(efficient feature and large receptive field network,EFLF-Net)。通过优化检测层架构降低小目标漏检率;在主干网络融合新的构建模块以提升特征提取效率;引入内容感知特征重组模块和大型选择性核网络,增强颈部网络对遮挡目标的上下文感知能力;采用Wise-IoU损失函数优化边界框回归稳定性。在VisDrone2019数据集上的实验结果表明,EFLF-Net较基准模型在平均精度上提高了5.2%。与已有代表性的目标检测算法相比,该方法对存在小目标、目标相互遮挡和复杂背景的无人机航拍图像有更好的检测效果。