期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SAE与底层视觉特征融合的无人机目标识别算法
被引量:
2
1
作者
谢冰
段哲民
《红外与激光工程》
EI
CSCD
北大核心
2018年第A01期197-205,共9页
无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对...
无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对无人机目标对象进行识别。算法首先利用底层视觉特征描述子(GIST、LBP)以及稀疏自动编码器(Sparse Auto—Encoder,SAE)提取目标对象的底层视觉特征和高层视觉特征;然后,采用主成分分析(PAC)法对全局特征进行降维融合;最后,将全局特征响应送入softmax回归模型完成无人机目标对象的分类。实验表明,与传统SAE算法及传统基于底层视觉特征描述子识别算法相比,新算法具有更高的准确性及鲁棒性。
展开更多
关键词
无人机目标对象
目标
识别
SPARSE
Auto—Encoder
底层视觉描述子
PCA
在线阅读
下载PDF
职称材料
基于SAE与底层视觉特征融合的无人机目标识别算法(英文)
被引量:
1
2
作者
谢冰
段哲民
《红外与激光工程》
EI
CSCD
北大核心
2018年第S1期205-213,共9页
无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对无人...
无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对无人机目标对象进行识别。算法首先利用底层视觉特征描述子(GIST、LBP)以及稀疏自动编码器(Sparse Auto-Encoder,SAE)提取目标对象的底层视觉特征和高层视觉特征;然后,采用主成分分析(PAC)法对全局特征进行降维融合;最后,将全局特征响应送入softmax回归模型完成无人机目标对象的分类。实验表明,与传统SAE算法及传统基于底层视觉特征描述子识别算法相比,新算法具有更高的准确性及鲁棒性。
展开更多
关键词
无人机目标对象
目标
识别
SPARSE
Auto-Encoder
底层视觉描述子
PCA
在线阅读
下载PDF
职称材料
题名
基于SAE与底层视觉特征融合的无人机目标识别算法
被引量:
2
1
作者
谢冰
段哲民
机构
西北工业大学电子信息学院
出处
《红外与激光工程》
EI
CSCD
北大核心
2018年第A01期197-205,共9页
基金
瞬态冲击技术重点实验室基金(61426060103162606007)
文摘
无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对无人机目标对象进行识别。算法首先利用底层视觉特征描述子(GIST、LBP)以及稀疏自动编码器(Sparse Auto—Encoder,SAE)提取目标对象的底层视觉特征和高层视觉特征;然后,采用主成分分析(PAC)法对全局特征进行降维融合;最后,将全局特征响应送入softmax回归模型完成无人机目标对象的分类。实验表明,与传统SAE算法及传统基于底层视觉特征描述子识别算法相比,新算法具有更高的准确性及鲁棒性。
关键词
无人机目标对象
目标
识别
SPARSE
Auto—Encoder
底层视觉描述子
PCA
Keywords
UAV target object
target recognition
Sparse Auto-Encoder
underlying visual descriptor
PCA
分类号
TP394.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于SAE与底层视觉特征融合的无人机目标识别算法(英文)
被引量:
1
2
作者
谢冰
段哲民
机构
西北工业大学电子信息学院
出处
《红外与激光工程》
EI
CSCD
北大核心
2018年第S1期205-213,共9页
基金
瞬态冲击技术重点实验室基金(61426060103162606007)
文摘
无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对无人机目标对象进行识别。算法首先利用底层视觉特征描述子(GIST、LBP)以及稀疏自动编码器(Sparse Auto-Encoder,SAE)提取目标对象的底层视觉特征和高层视觉特征;然后,采用主成分分析(PAC)法对全局特征进行降维融合;最后,将全局特征响应送入softmax回归模型完成无人机目标对象的分类。实验表明,与传统SAE算法及传统基于底层视觉特征描述子识别算法相比,新算法具有更高的准确性及鲁棒性。
关键词
无人机目标对象
目标
识别
SPARSE
Auto-Encoder
底层视觉描述子
PCA
Keywords
UAV target object
target recognition
Sparse Auto-Encoder
underlying visual descriptor
PCA
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SAE与底层视觉特征融合的无人机目标识别算法
谢冰
段哲民
《红外与激光工程》
EI
CSCD
北大核心
2018
2
在线阅读
下载PDF
职称材料
2
基于SAE与底层视觉特征融合的无人机目标识别算法(英文)
谢冰
段哲民
《红外与激光工程》
EI
CSCD
北大核心
2018
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部