期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
选择性坐标注意力下红外图像无人机目标检测方法 被引量:1
1
作者 吴茜 魏晶鑫 陈中举 《现代电子技术》 北大核心 2025年第7期43-47,共5页
为解决无人机带来的安全隐患与隐私侵犯等问题,提出选择性坐标注意力下红外图像无人机目标检测方法。基于选择性坐标注意力机制,通过非对称卷积核在不同方向上捕捉不同尺度和形状的特征,将无人机特征的行列位置信息进行编码,动态地调整... 为解决无人机带来的安全隐患与隐私侵犯等问题,提出选择性坐标注意力下红外图像无人机目标检测方法。基于选择性坐标注意力机制,通过非对称卷积核在不同方向上捕捉不同尺度和形状的特征,将无人机特征的行列位置信息进行编码,动态地调整不同位置特征的权重,强化关键区域的特征表示。将多个红外图像输入YOLOv5网络中进行训练和处理后,在主干网络中经卷积操作后嵌入选择性坐标注意力机制,实现红外图像无人机目标特征精确提取。采用GIoU作为损失函数,优化预测框的位置和大小,实现红外图像无人机目标精准检测。实验结果表明:该方法对大小不同的无人机目标均能实现准确且快速的定位与检测,能够保持较高的检测精度。 展开更多
关键词 坐标注意力机制 特征融合 YOLOv5网络 红外图像 无人机目标 目标检测
在线阅读 下载PDF
BG-YOLO:复杂大视场下低慢小无人机目标检测方法 被引量:1
2
作者 王迎龙 孙备 +2 位作者 丁冰 卜德森 孙晓永 《仪器仪表学报》 北大核心 2025年第2期255-266,共12页
针对现有无人机目标检测模型在体积、计算资源需求以及小目标检测效果方面的不足,提出了一种改进的无人机目标检测算法BG-YOLO。该算法基于YOLOv8,通过在高分辨率特征层添加检测头,有效减少了图像下采样过程中的信息丢失,显著提升了模... 针对现有无人机目标检测模型在体积、计算资源需求以及小目标检测效果方面的不足,提出了一种改进的无人机目标检测算法BG-YOLO。该算法基于YOLOv8,通过在高分辨率特征层添加检测头,有效减少了图像下采样过程中的信息丢失,显著提升了模型对小目标的检测能力。同时,引入Biformer注意力机可以制精准捕捉图像的远程依赖关系,增强模型对不同尺度目标的感知能力。此外,NWD损失函数的引入解决了传统损失函数在小目标检测中对位置偏差敏感的问题,显著提高了模型的鲁棒性。基于GhostNetV2的模型轻量化则通过替换传统卷积模块,在减少模型参数和计算量的同时,保持了模型的检测精度。实验结果表明,BG-YOLO在Det-Fly数据集上相比YOLOv8的mAP@0.5提高了10.3%,参数量减少了33.18%,而与YOLOv9相比提高了7.9%。此外,该算法在自采集数据集上也表现出色,对天空、山地、建筑等不同场景的低慢小目标分别实现了96.2%、88.1%和86.2%的平均精度,检测速度分别为150.36、128.21、112.53 fps,实现了高检测精度和高检测速度的要求。综上所述,BG-YOLO通过检测头设计、注意力机制引入、损失函数改进以及模型轻量化,显著提升了对低慢小无人机目标的检测精度和实时性,具有广阔的应用前景。 展开更多
关键词 YOLOv8 Biformer GhostNetV2 低慢小无人机目标检测 复杂大视角场景
在线阅读 下载PDF
显著性感知三重正则化相关滤波无人机目标跟踪算法
3
作者 贺冰 王法胜 +1 位作者 王星 孙福明 《北京航空航天大学学报》 北大核心 2025年第7期2423-2436,共14页
无人机(UAV)场景中的目标跟踪在很多现实任务中得到广泛应用。与一般场景中的目标跟踪任务不同,UAV目标跟踪更易受到复杂环境干扰和算力的限制。基于此,提出了一种显著性感知三重正则化相关滤波(TRCF)UAV目标跟踪算法。采用高效的显著... 无人机(UAV)场景中的目标跟踪在很多现实任务中得到广泛应用。与一般场景中的目标跟踪任务不同,UAV目标跟踪更易受到复杂环境干扰和算力的限制。基于此,提出了一种显著性感知三重正则化相关滤波(TRCF)UAV目标跟踪算法。采用高效的显著性目标检测算法动态生成对偶空间正则化器来抑制边界效应,惩罚不相关的背景噪声系数。引入时间正则化应对目标因外观变化而导致的滤波器退化问题,提供更鲁棒的外观模型。此外,引入轻量型的深度网络CF-VGG来提取目标的深度特征,并与手工特征线性融合描述目标的语义信息,提高跟踪精度。在5个公开的UAV基准数据集上进行了充分实验,结果表明:所提算法在5个数据集上的整体性能均有不同程度提升,证明了算法的有效性和鲁棒性,且算法的实时跟踪速度约为21帧/s,能够胜任UAV的目标跟踪任务。 展开更多
关键词 无人机目标跟踪 相关滤波 显著性特征图 时间正则化 轻量型深度网络
在线阅读 下载PDF
基于灰色神经网络的小型无人机目标威胁评估
4
作者 朱婧 徐好 +1 位作者 蒲桃园 杨雯霞 《火力与指挥控制》 北大核心 2025年第3期201-208,共8页
针对以四旋翼无人机为代表的“低慢小”目标威胁评估问题,提出了一种基于灰色神经网络的小型无人机目标威胁评估方法。该方法通过建立灰色神经网络模型,将灰色关联和BP神经网络的优势相结合,在提高目标威胁评估结果可靠性的同时,还弥补... 针对以四旋翼无人机为代表的“低慢小”目标威胁评估问题,提出了一种基于灰色神经网络的小型无人机目标威胁评估方法。该方法通过建立灰色神经网络模型,将灰色关联和BP神经网络的优势相结合,在提高目标威胁评估结果可靠性的同时,还弥补了单一灰色关联在时间维度上的信息缺失。实验结果表明,该方法的威胁评估效果明显优于单一灰色关联法,且具有较强的自适应学习能力,可以准确地实现低空领域小型无人机目标的威胁估计。 展开更多
关键词 低慢小目标 小型无人机目标 威胁评估 灰色神经网络
在线阅读 下载PDF
融合遮挡信息的改进DDETR无人机目标检测算法
5
作者 周建亭 宣士斌 王婷 《计算机工程与应用》 CSCD 北大核心 2024年第1期236-244,共9页
针对无人机航拍图像中目标场景复杂、小目标多、遮挡严重的问题,提出了一种融合目标遮挡信息的改进DDETR(deformable DETR)的无人机目标检测算法。提出模型用Swin Transformer代替DDETR模型中残差网络来获得更丰富的多层次语义特征;增加... 针对无人机航拍图像中目标场景复杂、小目标多、遮挡严重的问题,提出了一种融合目标遮挡信息的改进DDETR(deformable DETR)的无人机目标检测算法。提出模型用Swin Transformer代替DDETR模型中残差网络来获得更丰富的多层次语义特征;增加DDETR模型对低层次特征的使用来提高对中小目标的检测效果;利用提出的遮挡程度估计模块来辅助模型解决遮挡问题,使模型能更好地检测出遮挡严重的目标。在VisDrone数据集上达到32.3%的平均准确度均值(mean average precision,AP),比标准DDETR模型AP值提高了3.3个百分点,与主流无人机航拍图像目标检测方法相比,达到了当前先进水平。 展开更多
关键词 无人机目标检测 深度学习 交叉注意力 可变形卷积
在线阅读 下载PDF
无人机目标检测多深度混合特征域泛化方法研究
6
作者 王宝亮 姜智 +4 位作者 王健 张宝 马振宇 王博航 于海松 《兵器装备工程学报》 CSCD 北大核心 2024年第S2期295-302,共8页
由于当前无人机目标检测模型与频域等特征的关联能力弱、真实世界场景下知识迁移困难等,导致了模型泛化能力差,提出了一种无人机目标检测的多深度混合特征域泛化方法,强化了不同类型特征间的关联性提高了目标检测模型的泛化能力。提出... 由于当前无人机目标检测模型与频域等特征的关联能力弱、真实世界场景下知识迁移困难等,导致了模型泛化能力差,提出了一种无人机目标检测的多深度混合特征域泛化方法,强化了不同类型特征间的关联性提高了目标检测模型的泛化能力。提出了针对频域混合特征的混合特征融合方法,可对混合特征数据间的数据关联进行有效强化。为了降低域偏移对模型泛化性的影响,设计了针对多特征域解耦的混合特征多深度跳跃式融合编解码网络。相较于现有方法,可有效处理真实世界未见场景中的无人机目标检测,检测精度有明显提升。 展开更多
关键词 无人机目标检测 域泛化 频域特征 混合特征融合 多深度分层编码
在线阅读 下载PDF
基于改进暗通道先验去雾的无人机目标检测研究
7
作者 路佩东 范菁 孙书魁 《激光杂志》 CAS 北大核心 2024年第7期102-110,共9页
图像去雾是图像处理领域的一个重要研究热点。为了解决雾霾天气下图像的去雾与增强问题,提出了一种基于改进暗通道的去雾算法。首先为了使雾霾图像更接近无雾图像,提高图像的清晰度,该算法分别减少雾图像的RGB通道值,并结合每个减少的... 图像去雾是图像处理领域的一个重要研究热点。为了解决雾霾天气下图像的去雾与增强问题,提出了一种基于改进暗通道的去雾算法。首先为了使雾霾图像更接近无雾图像,提高图像的清晰度,该算法分别减少雾图像的RGB通道值,并结合每个减少的通道和其他两个先前未减少的通道,使用该图像去雾算法后再对三个新图像加权来恢复图像;为了解决图像天空区域出现颜色失真的问题,设置了一个参数K来分别计算天空区域和非天空区域的透射率;为了解决图像中亮度过暗和增加目标对比度,本文引入CLAHE的方法对图像进行增强处理。实验结果表明:本算法在5张图像的对比度值分别是MDCP和RSD算法的2倍多和3倍多,在5张图像中的信息熵均值为7.5589,均明显优于其余2种算法,并且该算法在雾霾天气下目标检测的平均精度可达73%,相比于未经处理图像前提升了15%,具有一定的可行性。 展开更多
关键词 去雾增强 暗通道模型 颜色通道 自适应天空 CLAHE 无人机视角目标检测
在线阅读 下载PDF
基于SAE与底层视觉特征融合的无人机目标识别算法 被引量:2
8
作者 谢冰 段哲民 《红外与激光工程》 EI CSCD 北大核心 2018年第A01期197-205,共9页
无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对... 无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对无人机目标对象进行识别。算法首先利用底层视觉特征描述子(GIST、LBP)以及稀疏自动编码器(Sparse Auto—Encoder,SAE)提取目标对象的底层视觉特征和高层视觉特征;然后,采用主成分分析(PAC)法对全局特征进行降维融合;最后,将全局特征响应送入softmax回归模型完成无人机目标对象的分类。实验表明,与传统SAE算法及传统基于底层视觉特征描述子识别算法相比,新算法具有更高的准确性及鲁棒性。 展开更多
关键词 无人机目标对象 目标识别 SPARSE Auto—Encoder 底层视觉描述子 PCA
在线阅读 下载PDF
全天实时跟踪无人机目标的多正则化相关滤波算法 被引量:2
9
作者 王法胜 李富 +3 位作者 尹双双 王星 孙福明 朱兵 《自动化学报》 EI CAS CSCD 北大核心 2023年第11期2409-2425,共17页
相关滤波算法(Correlation filter,CF)已广泛应用于无人机目标跟踪.然而,受无人机(Unmanned aerial vehicle,UAV)平台本身计算性能的制约,现有的无人机相关滤波跟踪算法大都仅采用手工特征来描述目标的外观,难以获得目标的全面语义信息... 相关滤波算法(Correlation filter,CF)已广泛应用于无人机目标跟踪.然而,受无人机(Unmanned aerial vehicle,UAV)平台本身计算性能的制约,现有的无人机相关滤波跟踪算法大都仅采用手工特征来描述目标的外观,难以获得目标的全面语义信息.并且这些跟踪算法仅能较好地进行光照条件良好场景下的跟踪,而在跟踪夜间场景下的目标时性能严重下降.此外,相关滤波跟踪器采用余弦窗口来抑制循环移位产生的边界效应,缩小了样本提取区域,产生了训练样本污染的问题,这不可避免地降低了跟踪器的性能.针对以上问题,提出全天实时多正则化相关滤波算法(All-day and realtime multi-regularized correlation filter,AMRCF)跟踪无人机目标.首先,引入一个自适应图像增强模块,在不影响图像各通道颜色比例的前提下,对获得的图像进行增强,以提高夜间目标跟踪性能.其次,引入一个轻量型的深度网络来提取目标的深度特征,并与手工特征一起来表示目标的语义信息.此外,在算法框架中嵌入高斯形状掩膜,在抑制边界效应的同时,有效避免训练样本污染.最后,在5个公开的无人机基准数据集上进行充分的实验.实验结果表明,所提出的算法与多个先进的相关滤波跟踪器相比,取得了有竞争力的结果,且算法的实时速度约为25 fps,能够胜任无人机的目标跟踪任务. 展开更多
关键词 无人机目标跟踪 相关滤波 自适应图像增强模块 轻量型深度网络 高斯形状掩膜
在线阅读 下载PDF
基于SAE与底层视觉特征融合的无人机目标识别算法(英文) 被引量:1
10
作者 谢冰 段哲民 《红外与激光工程》 EI CSCD 北大核心 2018年第S1期205-213,共9页
无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对无人... 无人机在复杂战场环境下,因敌方无人机外形、颜色等特征较为相似,现有基于底层视觉特征无法快速地对其进而准确的识别,从而造成误检测甚至误打击等事件的发生。针对这一问题,文中提出基于稀疏自动编码器融合底层视觉特征的算法,对无人机目标对象进行识别。算法首先利用底层视觉特征描述子(GIST、LBP)以及稀疏自动编码器(Sparse Auto-Encoder,SAE)提取目标对象的底层视觉特征和高层视觉特征;然后,采用主成分分析(PAC)法对全局特征进行降维融合;最后,将全局特征响应送入softmax回归模型完成无人机目标对象的分类。实验表明,与传统SAE算法及传统基于底层视觉特征描述子识别算法相比,新算法具有更高的准确性及鲁棒性。 展开更多
关键词 无人机目标对象 目标识别 SPARSE Auto-Encoder 底层视觉描述子 PCA
在线阅读 下载PDF
基于贝叶斯信息更新的无人机目标搜索策略研究 被引量:2
11
作者 李悦 周长银 《山东科技大学学报(自然科学版)》 CAS 北大核心 2020年第6期71-76,共6页
基于贝叶斯信息更新方法,提出了一个无人机目标搜索的动态策略模型,并给出了相应算法。该模型是在一般贝叶斯先验假设下给出的,不需要现有相关文献中均匀分布的假设。在无人机搜索行动中,可以实施贝叶斯干预,利用新获取的目标搜索区域... 基于贝叶斯信息更新方法,提出了一个无人机目标搜索的动态策略模型,并给出了相应算法。该模型是在一般贝叶斯先验假设下给出的,不需要现有相关文献中均匀分布的假设。在无人机搜索行动中,可以实施贝叶斯干预,利用新获取的目标搜索区域的额外信息,实时地改进搜索策略。数值实验中,假设目标处于搜索区域的分布为正态分布,实验结果表明,相比较均匀分布假设,在正态分布假设下发现概率更大,而且贝叶斯干预后的累计发现概率不会降低。 展开更多
关键词 发现概率 贝叶斯更新 贝叶斯干预 搜索策略 无人机目标
在线阅读 下载PDF
增强特征信息的孪生网络无人机目标跟踪方法 被引量:1
12
作者 周文豪 杨帅东 赵书朵 《计算机工程与设计》 北大核心 2022年第8期2325-2333,共9页
为解决无人机视觉下目标因光照变化、完全遮挡、快速运动等情况导致跟踪效果变差甚至跟踪失败的问题,基于全卷积孪生网络跟踪算法SiamFC提出一种增强特征信息的目标跟踪方法。采用GOT-10K数据集替换原训练数据集ILSVRC2015-VID对模型进... 为解决无人机视觉下目标因光照变化、完全遮挡、快速运动等情况导致跟踪效果变差甚至跟踪失败的问题,基于全卷积孪生网络跟踪算法SiamFC提出一种增强特征信息的目标跟踪方法。采用GOT-10K数据集替换原训练数据集ILSVRC2015-VID对模型进行训练,构造理解能力更深的网络模型;将带有高语义信息和低细节的浅层特征融入到深卷积层中增强网络对目标特征的提取能力;引入轻量级条带池化模块加强目标特征信息。在UAV123公开数据集基准上进行测试,实验结果表明,该方法的成功率和精确度分别达到0.542和0.746。 展开更多
关键词 无人机目标跟踪 条带池化 孪生网络 特征融合 全卷积 GOT-10K数据集
在线阅读 下载PDF
基于特征增强的轻量级无人机目标检测算法 被引量:1
13
作者 陈运雷 刘紫燕 +3 位作者 吴应雨 郑旭晖 张倩 杨模 《传感技术学报》 CAS CSCD 北大核心 2023年第6期901-910,共10页
针对无人机航拍图像特征少,小尺寸目标多以及检测任务实时性要求高等问题,以YOLOX算法为基础提出基于特征增强的轻量级无人机目标检测算法。首先,设计更加轻量的密集残差网络结构ResNet_G优化模型的主干网络,提升模型对图像特征的利用率... 针对无人机航拍图像特征少,小尺寸目标多以及检测任务实时性要求高等问题,以YOLOX算法为基础提出基于特征增强的轻量级无人机目标检测算法。首先,设计更加轻量的密集残差网络结构ResNet_G优化模型的主干网络,提升模型对图像特征的利用率,同时降低模型复杂度;其次,提出基于注意力机制的Atrous Spatial Pyramid Pooling(ASPP)模块作为特征增强模块,加强上下文信息关联度以减少丢失小目标特征;最后,使用Focal Loss函数与CDIoU Loss函数,改善负样本对模型权重的影响以提高对密集目标的识别能力。实验结果表明,与原网络相比,改进后算法在VisDrone2021数据集上平均检测精度提升5.08%,参数量减少0.25 M,推理时间降低2.21 ms。 展开更多
关键词 无人机目标检测 轻量化 Ghost模块 Atrous Spatial Pyramid Pooling(ASPP) CDIoU Loss Focal Loss
在线阅读 下载PDF
时序信息引导跨视角特征融合的多无人机多目标跟踪方法
14
作者 伍瀚 孙浩 +1 位作者 计科峰 匡纲要 《电子学报》 北大核心 2025年第3期728-743,共16页
多无人机多目标跟踪旨在从多架无人机同时捕获的视频中预测所有目标的轨迹和身份标识,以解决单个无人机视频受遮挡和杂乱背景等干扰时跟踪性能衰退的问题.然而,不同无人机捕获的图像视角和尺度差异通常较大,导致对齐和融合不同无人机图... 多无人机多目标跟踪旨在从多架无人机同时捕获的视频中预测所有目标的轨迹和身份标识,以解决单个无人机视频受遮挡和杂乱背景等干扰时跟踪性能衰退的问题.然而,不同无人机捕获的图像视角和尺度差异通常较大,导致对齐和融合不同无人机图像特征困难.针对该问题,本文提出一种通过时序信息引导跨视角特征融合的跟踪算法——TCFNet.该算法首先设计一种目标感知的对齐网络(Object-aware Alignment Network,OAN),利用跟踪过程中的目标轨迹先验估计先前时刻不同视角无人机视频帧间的转换关系.其次,构建一种时序感知的对齐网络(Temporal-aware Alignment Network,TAN),探索前后时刻同一架无人机捕获图像的信息对不同视角图像的转换关系进行精调.最后,基于OAN和TAN估计的不同无人机图像间的转换关系,设计一个跨机特征融合网络(Cross-drone Feature Fusion Network,CFFN)对不同无人机捕获的视觉信息进行融合,解决复杂场景下模型跟踪性能衰退的问题.在MDMT数据集上的实验结果表明,所提出的TCFNet相比其他主流的跟踪方法更具竞争力,在跟踪准确率、识别F1值和多机目标关联分数上超出当前的先进算法2.23、1.67和2.15个百分点. 展开更多
关键词 无人机目标跟踪 时序信息 轨迹先验 跨视角特征融合 准确跟踪
在线阅读 下载PDF
MBFE-DETR:多尺度边界特征增强下的无人机目标检测算法
15
作者 张晞 赖惠成 +4 位作者 姜迪 汤静雯 高古学 袁婷婷 聂源 《计算机工程与应用》 2025年第17期89-101,共13页
针对无人机视角下背景复杂、小目标比例较高且样本不平衡等问题,提出一种基于改进RT-DETR的无人机目标检测算法MBFE-DETR。设计一种基于C2f和单头自注意力模块的轻量化主干网络,降低模型参数量的同时提升网络的特征提取能力。提出多尺... 针对无人机视角下背景复杂、小目标比例较高且样本不平衡等问题,提出一种基于改进RT-DETR的无人机目标检测算法MBFE-DETR。设计一种基于C2f和单头自注意力模块的轻量化主干网络,降低模型参数量的同时提升网络的特征提取能力。提出多尺度边界特征增强协同网络MBFECN,通过其特有的多尺度边界特征增强机制和高效特征融合策略,解决了原模型在保持小目标边界细节方面的不足。引入Focaler-MPDIoU考虑框的位置匹配关系,同时通过线性区间映射重构原有IoU损失,使模型在复杂场景下的定位效果更好。针对样本不平衡的问题,采用新的分类损失函数ESVLoss,对分类损失值进行分段加权调整,并结合指数移动平均机制对权重进行动态平滑更新,使模型更具适应性。实验结果表明,在VisDrone2019-DET和DOTAv1.0数据集上,MBFE-DETR算法的mAP50分别提升3.9和2.9个百分点,同时参数量减少了21.6%。 展开更多
关键词 无人机目标检测 RT-DETR 单头自注意力 边界特征增强
在线阅读 下载PDF
基于SE-Hardnet网络的无人机图像目标匹配算法 被引量:2
16
作者 苏文博 房群忠 +1 位作者 徐保树 张程硕 《沈阳工业大学学报》 CAS 北大核心 2024年第5期693-701,共9页
针对无人机对目标进行匹配定位过程中,面临图像旋转变化及视角尺寸过小导致的图像特征提取困难等问题,提出了一种融合候选区域检测与SE-Hardnet特征提取网络的无人机目标图像匹配算法。通过Edge Boxes算法检测候选区域,结合SE-Hardnet... 针对无人机对目标进行匹配定位过程中,面临图像旋转变化及视角尺寸过小导致的图像特征提取困难等问题,提出了一种融合候选区域检测与SE-Hardnet特征提取网络的无人机目标图像匹配算法。通过Edge Boxes算法检测候选区域,结合SE-Hardnet网络进行特征提取,实现了目标图像的精确匹配。实验结果表明,所提算法在图像发生角度、尺寸变化时,具有更高的匹配正确率和鲁棒性,在近距离条件下图片数据集中的匹配正确率比现阶段图像匹配算法高8%~11%。为无人机目标定位提供了一种可行和有效的手段。 展开更多
关键词 图像匹配 候选区域检测 Edge Boxes算法 特征提取 注意力机制 SE-Hardnet网络 相似性度量 无人机目标定位
在线阅读 下载PDF
无人机视角下的小目标检测方法研究
17
作者 于彦辉 司占军 +2 位作者 张滢雪 李雅静 卢勇拾 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第1期60-69,共10页
针对传统卷积网络对无人机图像中小目标检测精度低和误检问题,本研究提出一种改进的无人机图像小目标检测算法,提高航拍检测精度。本算法采用YOLOv7作为基本框架,并在空间金字塔池化中融入动态稀疏注意力,形成SPPCSPC-B模块,增强了对小... 针对传统卷积网络对无人机图像中小目标检测精度低和误检问题,本研究提出一种改进的无人机图像小目标检测算法,提高航拍检测精度。本算法采用YOLOv7作为基本框架,并在空间金字塔池化中融入动态稀疏注意力,形成SPPCSPC-B模块,增强了对小目标的检测能力。同时,本算法使用局部卷积替代了高效聚合网络中的部分群卷积,形成ELAN-P模块,提高了检测速度。最后,使用轻量级上采样算子CARAFE对特征进行重组,进一步提高了检测精度。在Aerial-airport数据集上的实验结果表明,本算法在参数量减少9%、模型缩小8%的情况下,检测精度达94.7%,召回率达到90.8%,比基准算法提高了3.9个百分点,且有效改善了小目标误检、漏检现象。 展开更多
关键词 无人机目标检测 YOLOv7 动态稀疏注意力 部分卷积 CARAFE
在线阅读 下载PDF
高动态场景下无人机空对空目标检测
18
作者 王林 赵莉 王无为 《计算机工程》 CAS CSCD 北大核心 2024年第12期265-275,共11页
针对高动态场景下无人机(UVA)空对空目标检测任务中机载设备计算资源有限和UVA小目标检测困难的问题,提出一种基于轻量级注意力机制的无人机空对空目标检测算法SGC-YOLOv5。首先,设计S-Ghost模块和SD-Ghost结构构建特征提取网络SD-Ghost... 针对高动态场景下无人机(UVA)空对空目标检测任务中机载设备计算资源有限和UVA小目标检测困难的问题,提出一种基于轻量级注意力机制的无人机空对空目标检测算法SGC-YOLOv5。首先,设计S-Ghost模块和SD-Ghost结构构建特征提取网络SD-GhostNet,降低模型参数量和计算复杂度;其次,引入更高效的GSConv和VOVGSCSP结构细化特征融合网络,将SD-GhostNet和细化的特征融合网络相结合使模型达到最佳的轻量化效果;最后,在特征融合网络中加入轻量级卷积块注意力模块(CBAM)来突出图像中感兴趣的UVA特征,抑制背景冗余信息,提高检测精度。在数据集Det-Fly上的实验结果表明,SGC-YOLOv5算法的精确率为74.9%、参数量为4313695、检测速度为169.42帧/s、每秒浮点运算次数(FLOPs)为9.0×10^(9),与基准YOLOv5s算法相比,检测精确率提升2.5%、参数量减少48.5%、检测速度提升26.17帧/s、FLOPs降低57.5%,在实现模型轻量化的同时取得了较好的检测精确率。 展开更多
关键词 视觉目标检测 无人机空对空目标检测 YOLOv5算法 轻量化 注意力机制
在线阅读 下载PDF
特征平衡的无人机航拍图像目标检测算法 被引量:16
19
作者 徐坚 谢正光 李洪均 《计算机工程与应用》 CSCD 北大核心 2023年第6期196-203,共8页
无人机航拍图像目标较小、图像视角变化大,导致目标检测效果不佳。针对此问题,设计了一种适用于无人机小目标检测的网络。该网络中的可变形卷积模块可以提高多视角目标的特征提取能力,以解决航拍图像目标视角变化剧烈致使目标特征难以... 无人机航拍图像目标较小、图像视角变化大,导致目标检测效果不佳。针对此问题,设计了一种适用于无人机小目标检测的网络。该网络中的可变形卷积模块可以提高多视角目标的特征提取能力,以解决航拍图像目标视角变化剧烈致使目标特征难以提取的问题;特征平衡金字塔模块可以增强网络中底层小目标特征,以解决航拍图像中的小目标因特征易丢失而造成其检测效果差的问题;同时利用像素重组构建底层大尺度特征以解决特征平衡金字塔模块的底层特征卷积运算量大的问题;交叉自注意力机制获取目标上下文信息,改善严苛条件下的漏检错检问题。公开数据集上的仿真结果表明,在保证实时检测的情况下所提算法的平均准确度优于主流检测算法。 展开更多
关键词 无人机目标检测 特征平衡金字塔 交叉自注意力 像素重组
在线阅读 下载PDF
基于多重检测的无人机抗遮挡目标跟踪算法 被引量:1
20
作者 张博恒 柴栋栋 +1 位作者 孟令博 孙明健 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第9期2442-2454,共13页
针对无人机(UAV)目标跟踪过程中遇到目标被障碍物遮挡时跟踪效果不佳的问题,提出一种多重检测的抗遮挡目标跟踪算法。在基于时空正则化相关滤波算法的框架下通过融合多种置信度函数,设计了一种响应置信度判别方法;为了具体了解目标被遮... 针对无人机(UAV)目标跟踪过程中遇到目标被障碍物遮挡时跟踪效果不佳的问题,提出一种多重检测的抗遮挡目标跟踪算法。在基于时空正则化相关滤波算法的框架下通过融合多种置信度函数,设计了一种响应置信度判别方法;为了具体了解目标被遮挡情况,将响应差值变化和响应梯度变化结合在一起作为判断是否更新滤波模板参数的依据;设计了一种融合分块思想与金字塔尺度池的尺度估计方法来解决目标在图像中尺度大小变化问题。所提算法在UAV数据集上相较于其他7种算法有不错的表现,在跟踪过程中面对目标遮挡、尺度变化和快速移动问题的跟踪精度和成功率上都有明显的提升。结果表明:所提算法能够更好地应对UAV在目标跟踪过程中出现的目标遮挡和尺度变化的问题,具有良好的快速性、准确性和鲁棒性。 展开更多
关键词 无人机目标跟踪 相关滤波 抗遮挡 多重检测 尺度自适应
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部