期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进LSTM网络的无人机MEMS-IMU零偏在线标定方法
1
作者 程向红 吴昕怡 +1 位作者 刘丰宇 钟志伟 《中国惯性技术学报》 EI CSCD 北大核心 2024年第3期213-218,共6页
针对在卫星信号拒止、视觉系统退化场景中无人机MEMS-IMU零偏无法准确估计并补偿导致导航误差迅速发散的问题,提出一种基于改进长短时记忆(LSTM)网络的零偏在线标定方法。首先,为解决MEMS-IMU零偏数据非线性强、传统循环时间网络训练效... 针对在卫星信号拒止、视觉系统退化场景中无人机MEMS-IMU零偏无法准确估计并补偿导致导航误差迅速发散的问题,提出一种基于改进长短时记忆(LSTM)网络的零偏在线标定方法。首先,为解决MEMS-IMU零偏数据非线性强、传统循环时间网络训练效果差的问题,设计序列到序列的LSTM神经网络结构,引入教师强迫机制,提高了网络特征学习能力。然后,在导航过程中使用训练后的网络对MEMS-IMU零偏在线标定,补偿后的IMU量测与视觉信息联合优化,保证了导航定位精度。实验结果表明,在纯惯性导航实验中,所提方法的绝对位置误差比传统LSTM方法减小了6.5%;在EUROC数据集下进行的视觉惯性组合导航实验中,所提方法的平均绝对位置误差比传统LSTM方法减小了15%。 展开更多
关键词 无人机导航定位 微惯性测量单元 在线标定 长短时记忆神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部