The movement mode of the atomizer is a very important parameter during spray deposition process,which has direct influence on the size and surface texture of the billets. To resolve the problem of manufacturing large ...The movement mode of the atomizer is a very important parameter during spray deposition process,which has direct influence on the size and surface texture of the billets. To resolve the problem of manufacturing large size billets,a method of spray deposition by the atomizer with off-center swing was put forward. The atomizer was driven by the alternating current servomotor to swing within 7° at varying speed. The influence of the atomizer parameters,such as translation of the atomizer,swing angle of the atomizer,substrate falling speed and spraying pressure,on the spray deposition was studied. The optimized parameters of the spray deposition process were obtained. The results show that the large size billets with uniform surface quality can be made through adjusting swing frequency and angle of the atomizer,offset distance of the atomizer and inclined angle of the substrate; the valid spray area will decrease and the dimension of top surface will reduce when pressure is less than 0.4 MPa within certain spray distance; meantime,the moving time and cooling time of the droplets are extended,which will lead to loose structure and bad densification. When the pressure,the swing angle and the eccentric offset of the atomization equal 0.5 MPa,7° and 60 mm,respectively,large size billets with fine texture and diameter of 500 mm can be produced.展开更多
To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for desig...To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for designing a new robotic helical milling hole system, which could further improve robotic hole-making ability in airplane digital assembly. After analysis on the characteristics of helical milling hole, advantages and limitations of two typical robotic helical milling hole systems were summarized. Then, vector model of helical milling hole movement was built on vector analysis method. Finally, surface roughness calculation formula was deduced according to the movement principle of helical milling hole, then the influence of main technological parameters on surface roughness was analyzed. Analysis shows that theoretical surface roughness of hole becomes poor with the increase of tool speed ratio and revolution radius. Meanwhile, the roughness decreases according to the increase of tool teeth number. The research contributes greatly to the construction of roughness prediction model in helical milling hole.展开更多
基金Project(G1999064900) supported by the National Key Fundamental Research and Development Program of China
文摘The movement mode of the atomizer is a very important parameter during spray deposition process,which has direct influence on the size and surface texture of the billets. To resolve the problem of manufacturing large size billets,a method of spray deposition by the atomizer with off-center swing was put forward. The atomizer was driven by the alternating current servomotor to swing within 7° at varying speed. The influence of the atomizer parameters,such as translation of the atomizer,swing angle of the atomizer,substrate falling speed and spraying pressure,on the spray deposition was studied. The optimized parameters of the spray deposition process were obtained. The results show that the large size billets with uniform surface quality can be made through adjusting swing frequency and angle of the atomizer,offset distance of the atomizer and inclined angle of the substrate; the valid spray area will decrease and the dimension of top surface will reduce when pressure is less than 0.4 MPa within certain spray distance; meantime,the moving time and cooling time of the droplets are extended,which will lead to loose structure and bad densification. When the pressure,the swing angle and the eccentric offset of the atomization equal 0.5 MPa,7° and 60 mm,respectively,large size billets with fine texture and diameter of 500 mm can be produced.
基金Foundation item: Projects(50975141, 51005118) supported by the National Natural Science Foundation of China Projects(20091652018, 2010352005) supported by Aviation Science Fund of China Project(YKJ11-001) supported by Key Program of Nanjing College of Information Technology Institute, China
文摘To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for designing a new robotic helical milling hole system, which could further improve robotic hole-making ability in airplane digital assembly. After analysis on the characteristics of helical milling hole, advantages and limitations of two typical robotic helical milling hole systems were summarized. Then, vector model of helical milling hole movement was built on vector analysis method. Finally, surface roughness calculation formula was deduced according to the movement principle of helical milling hole, then the influence of main technological parameters on surface roughness was analyzed. Analysis shows that theoretical surface roughness of hole becomes poor with the increase of tool speed ratio and revolution radius. Meanwhile, the roughness decreases according to the increase of tool teeth number. The research contributes greatly to the construction of roughness prediction model in helical milling hole.