期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于双扩张层和旋转框定位的群猪目标检测算法研究
被引量:
2
1
作者
耿艳利
林彦伯
+1 位作者
付艳芳
杨淑才
《农业机械学报》
EI
CAS
CSCD
北大核心
2023年第4期323-330,共8页
目前猪群图像检测均为基于水平框的目标检测算法,对于图像中猪体粘连和相互遮挡情况检测率较低,针对图像中的猪只长宽比例较大和可能发生任意角度旋转的特点,提出了一种基于双扩张层和旋转框定位的群猪目标检测算法(Dual dilated layer ...
目前猪群图像检测均为基于水平框的目标检测算法,对于图像中猪体粘连和相互遮挡情况检测率较低,针对图像中的猪只长宽比例较大和可能发生任意角度旋转的特点,提出了一种基于双扩张层和旋转框定位的群猪目标检测算法(Dual dilated layer and rotary box location network,DR Net)。采集3个猪场的群猪图像,利用数据增强保留9600幅图像制作数据集;基于膨胀卷积搭建提取图像全局信息的双扩张层,借鉴Res2Net模块改进CSP层融合多尺度特征,猪只目标以旋转框定位并采用五参数表示法在模型训练中利用Gaussian Wasserstein distance计算旋转框的回归损失。试验结果表明,DR Net对猪只目标识别的精确率、召回率、平均精确率、MAE、RMSE分别为98.57%、97.27%、96.94%、0.21、0.54,其检测效果优于YOLO v5,提高了遮挡与粘连场景下的识别精度和计数精度。利用可视化特征图分析算法在遮挡和粘连场景下能够利用猪只头颈部、背部或尾部特征准确定位目标。该研究有助于智能化猪场建设,可为后续猪只行为识别研究提供参考。
展开更多
关键词
群猪
目标检测
膨胀卷积
Gaussian
Wasserstein
distance
旋转框定位
在线阅读
下载PDF
职称材料
题名
基于双扩张层和旋转框定位的群猪目标检测算法研究
被引量:
2
1
作者
耿艳利
林彦伯
付艳芳
杨淑才
机构
河北工业大学人工智能与数据科学学院
智能康复装置与检测技术教育部工程研究中心
河北省畜牧总站
天津魔界客智能科技有限公司
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2023年第4期323-330,共8页
基金
河北省重点研发计划项目(22326606D、20326620D)。
文摘
目前猪群图像检测均为基于水平框的目标检测算法,对于图像中猪体粘连和相互遮挡情况检测率较低,针对图像中的猪只长宽比例较大和可能发生任意角度旋转的特点,提出了一种基于双扩张层和旋转框定位的群猪目标检测算法(Dual dilated layer and rotary box location network,DR Net)。采集3个猪场的群猪图像,利用数据增强保留9600幅图像制作数据集;基于膨胀卷积搭建提取图像全局信息的双扩张层,借鉴Res2Net模块改进CSP层融合多尺度特征,猪只目标以旋转框定位并采用五参数表示法在模型训练中利用Gaussian Wasserstein distance计算旋转框的回归损失。试验结果表明,DR Net对猪只目标识别的精确率、召回率、平均精确率、MAE、RMSE分别为98.57%、97.27%、96.94%、0.21、0.54,其检测效果优于YOLO v5,提高了遮挡与粘连场景下的识别精度和计数精度。利用可视化特征图分析算法在遮挡和粘连场景下能够利用猪只头颈部、背部或尾部特征准确定位目标。该研究有助于智能化猪场建设,可为后续猪只行为识别研究提供参考。
关键词
群猪
目标检测
膨胀卷积
Gaussian
Wasserstein
distance
旋转框定位
Keywords
pigs
object detection
dilated convolution
Gaussian Wasserstein distance
rotary box location
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于双扩张层和旋转框定位的群猪目标检测算法研究
耿艳利
林彦伯
付艳芳
杨淑才
《农业机械学报》
EI
CAS
CSCD
北大核心
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部