目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clu...目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clustering by Fast Search and Find of Density Peaks Optimizing Fuzzy C-Means,DPC-FCM)结合的无监督诊断方法。方法 首先,将多尺度排列熵与峭度相结合的综合系数作为适应度函数,对VMD算法的惩罚因子alpha和模态个数K进行参数寻优,提取分解后本征模态函数(Intrinsic Mode Function,IMF)的平均样本熵与平均模糊熵,并输入至聚类算法中。其次,提出利用密度峰值聚类算法确定FCM的初始聚类中心,降低聚类结果的随机性。结果 将提出的无监督故障诊断模型应用到滚动轴承试验信号中,实现了准确的故障诊断。结论 AVMD在故障提取方面具有优越性,同时DPC算法可以有效提高FCM算法无监督聚类的准确性,二者结合可以有效实现旋转机械故障的智能分类。展开更多
针对现有分离式电磁矢量传感器阵列的两维波达方向(Direction of Arrival,DOA)估计存在的两个问题:其一,当入射信号在时域上不具有旋转不变性时,现有算法失效;其二,无法实现阵列的两维孔径扩展导致两维DOA估计精度较差,提出了一种改进...针对现有分离式电磁矢量传感器阵列的两维波达方向(Direction of Arrival,DOA)估计存在的两个问题:其一,当入射信号在时域上不具有旋转不变性时,现有算法失效;其二,无法实现阵列的两维孔径扩展导致两维DOA估计精度较差,提出了一种改进的分离式电磁矢量传感器阵列结构.首先利用所提阵列的空域旋转不变性代替时域旋转不变性得到其中一维方向余弦的高精度估计;其次结合矢量叉乘法与相位干涉法得到另一维的方向余弦高精度估计;最后对两维方向余弦进行三角操作得到目标的两维DOA估计.本文算法摆脱了对入射信号形式的依赖,实现了阵列的两维孔径扩展,使得两维DOA估计精度大大提高.仿真结果证明了本文算法的有效性.展开更多
文摘目的 针对旋转机械故障诊断过程中存在故障信号特征提取困难、故障诊断过程有标签数据较少、故障诊断准确率低等问题,提出自适应变分模态分解算法(Adaptive Variational Mode Decomposition,AVMD)与密度峰值算法优化的模糊C均值算法(Clustering by Fast Search and Find of Density Peaks Optimizing Fuzzy C-Means,DPC-FCM)结合的无监督诊断方法。方法 首先,将多尺度排列熵与峭度相结合的综合系数作为适应度函数,对VMD算法的惩罚因子alpha和模态个数K进行参数寻优,提取分解后本征模态函数(Intrinsic Mode Function,IMF)的平均样本熵与平均模糊熵,并输入至聚类算法中。其次,提出利用密度峰值聚类算法确定FCM的初始聚类中心,降低聚类结果的随机性。结果 将提出的无监督故障诊断模型应用到滚动轴承试验信号中,实现了准确的故障诊断。结论 AVMD在故障提取方面具有优越性,同时DPC算法可以有效提高FCM算法无监督聚类的准确性,二者结合可以有效实现旋转机械故障的智能分类。
文摘针对现有分离式电磁矢量传感器阵列的两维波达方向(Direction of Arrival,DOA)估计存在的两个问题:其一,当入射信号在时域上不具有旋转不变性时,现有算法失效;其二,无法实现阵列的两维孔径扩展导致两维DOA估计精度较差,提出了一种改进的分离式电磁矢量传感器阵列结构.首先利用所提阵列的空域旋转不变性代替时域旋转不变性得到其中一维方向余弦的高精度估计;其次结合矢量叉乘法与相位干涉法得到另一维的方向余弦高精度估计;最后对两维方向余弦进行三角操作得到目标的两维DOA估计.本文算法摆脱了对入射信号形式的依赖,实现了阵列的两维孔径扩展,使得两维DOA估计精度大大提高.仿真结果证明了本文算法的有效性.