Different from the previous qualitative analysis of linear systems in time and frequency domains, the method for describing nonlinear systems quantitatively is proposed based on correlated dimensions. Nonlinear dynami...Different from the previous qualitative analysis of linear systems in time and frequency domains, the method for describing nonlinear systems quantitatively is proposed based on correlated dimensions. Nonlinear dynamics theory is used to analyze the pressure data of a contrarotating axial flow fan. The delay time is 18 and the embedded dimension varies from 1 to 25 through phase-space reconstruction. In addition, the correlated dimensions are calculated before and after stalling. The results show that the correlated dimensions drop from 1. 428 before stalling to 1. 198 after stalling, so they are sensitive to the stalling signal of the fan and can be used as a characteristic quantity for the judging of the fan stalling.展开更多
Aim To design an ASIC based on CORDIC(coordinate rotations digital computer) to meet the requirement of coordinate conversion in high speed radar signal processing. Methods A new pipeline CORDIC architecture easi...Aim To design an ASIC based on CORDIC(coordinate rotations digital computer) to meet the requirement of coordinate conversion in high speed radar signal processing. Methods A new pipeline CORDIC architecture easily realized in VLSI was introduced. Results and Conclusion The results of hardware simulation with FPGA show that the pipeline CORDIC architecture meets the requirement.展开更多
An analytical study of the flow and pressure fields inside a small-diameter dense-media cyclone is presented.The simulations were done with the help of the CFD software FLUENT.The following conclusions were reached:th...An analytical study of the flow and pressure fields inside a small-diameter dense-media cyclone is presented.The simulations were done with the help of the CFD software FLUENT.The following conclusions were reached:the tangential velocity tends to increase when moving from the center toward the exterior.The velocity then begins to decrease when the maximum velocity point is reached.The velocity field divides into two different sections;an inner swirling zone and an outer swirling zone.The axial velocity points down at the wall and gradually decreases toward the bottom.Continuing toward the bottom,the axial velocity passes through zero and then gradually increases in the opposite direction.In the cyclone's central zone,the pressure is negative and the suction of air allows an air column to be formed therein.At the center of the radial negative zone the pressure drops to its lowest value—phenomenon that has been verified by theoretical analysis.Some discrepancies between the observed data and the simulated data are noted when an analysis in made on a cyclone operating with either fresh water only or with water with added heavy particles.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2005018)the Graduate Research and Innovation Plan of Jiangsu Province(CX07B-061Z)~~
文摘Different from the previous qualitative analysis of linear systems in time and frequency domains, the method for describing nonlinear systems quantitatively is proposed based on correlated dimensions. Nonlinear dynamics theory is used to analyze the pressure data of a contrarotating axial flow fan. The delay time is 18 and the embedded dimension varies from 1 to 25 through phase-space reconstruction. In addition, the correlated dimensions are calculated before and after stalling. The results show that the correlated dimensions drop from 1. 428 before stalling to 1. 198 after stalling, so they are sensitive to the stalling signal of the fan and can be used as a characteristic quantity for the judging of the fan stalling.
文摘Aim To design an ASIC based on CORDIC(coordinate rotations digital computer) to meet the requirement of coordinate conversion in high speed radar signal processing. Methods A new pipeline CORDIC architecture easily realized in VLSI was introduced. Results and Conclusion The results of hardware simulation with FPGA show that the pipeline CORDIC architecture meets the requirement.
基金Projects 2007AA05Z339 supported by the Hi-tech Research and Development Program of ChinaCPEUKF08-10 by the Key Laboratory Opening Fund of Coal Processing & Efficient Utilization,Ministry of Education of China
文摘An analytical study of the flow and pressure fields inside a small-diameter dense-media cyclone is presented.The simulations were done with the help of the CFD software FLUENT.The following conclusions were reached:the tangential velocity tends to increase when moving from the center toward the exterior.The velocity then begins to decrease when the maximum velocity point is reached.The velocity field divides into two different sections;an inner swirling zone and an outer swirling zone.The axial velocity points down at the wall and gradually decreases toward the bottom.Continuing toward the bottom,the axial velocity passes through zero and then gradually increases in the opposite direction.In the cyclone's central zone,the pressure is negative and the suction of air allows an air column to be formed therein.At the center of the radial negative zone the pressure drops to its lowest value—phenomenon that has been verified by theoretical analysis.Some discrepancies between the observed data and the simulated data are noted when an analysis in made on a cyclone operating with either fresh water only or with water with added heavy particles.