期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
使用卷积神经网络方法识别SDSS DR7Q中的FeLoBAL类星体
1
作者 何子麒 傅煜铭 +1 位作者 吴学兵 何凌雪 《天文学报》 北大核心 2025年第3期112-125,共14页
铁低电离宽吸收线类星体(Fe Low-ionization Board Absorption Line Quasar,FeLoBALQ)是数量最稀少的类星体子类之一.该类型类星体的辐射将周围的物质猛烈吹开,形成强劲高速的外流,其中以铁为代表的低电离物质,吸收类星体的辐射,产生特... 铁低电离宽吸收线类星体(Fe Low-ionization Board Absorption Line Quasar,FeLoBALQ)是数量最稀少的类星体子类之一.该类型类星体的辐射将周围的物质猛烈吹开,形成强劲高速的外流,其中以铁为代表的低电离物质,吸收类星体的辐射,产生特征的低电离度铁元素宽线吸收谱.FeLoBALQ外流物质携带的能量之高,足以解释超大质量黑洞质量M与宿主星系核球速度弥散度σ_(*)的M-σ_(*)关系,同时有研究表明FeLoBALQ可能与星暴星系或星系主并合存在伴生关系.然而,迄今为止搜寻到的FeLoBALQ数量有限,难以从统计上验证上述理论.此研究计划在已有类星体大样本中开展大规模的搜寻工作,挖掘已发现类星体中的FeLoBALQ,为FeLoBALQ的进一步研究提供样本基础.使用深度学习中的卷积神经网络(Convolutional Neural Network,CNN)方法,将以往发现的FeLoBALQ光谱作为训练样本,对SDSS(Sloan Digital Sky Survey)DR7Q(Data Release 7 Quasar catalog)中、红移范围为0.8<z<2.125的共50931条类星体光谱进行鉴别,新搜寻到了160条FeLoBALQ光谱.研究发现FeLoBALQ的颜色比一般类星体更红,且以往发现的FeLoBALQ比新发现的稍微偏红;这些差异在蓝端更明显,在中红外波段差异则几乎消失.结合以往研究发现的FeLoBALQ,估计FeLoBALQ在该样本的该红移段内,占类星体总数的比例约为0.43%,此比例略高于以往研究,且可能依然偏小.今后希望将此方法扩展至更大样本如SDSS DR16Q(Data Release 16 Quasar catalog)以发现更多的FeLoBALQ,并使用大样本研究FeLoBALQ与宿主星系恒星形成、星系主并合的关系以及星系与中心超大质量黑洞的协同演化等问题. 展开更多
关键词 星系:活动 类星体:吸收线 方法:深度学习 星表
在线阅读 下载PDF
PEMFCs degradation prediction based on ENSACO-LSTM
2
作者 JIA Zhi-huan CHEN Lin +2 位作者 SHAO Ao-li WANG Yu-peng GAO Jin-wu 《控制理论与应用》 2025年第8期1578-1586,共9页
In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel... In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM. 展开更多
关键词 proton exchange membrane fuel cells swarm optimization algorithm performance aging prediction enhanced search ant colony algorithm data-driven approach deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部