期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
非等间隔测量条件下的时间传递链路数据融合方法研究
1
作者 王翔 宋会杰 +4 位作者 郭栋 高喆 王威雄 武文俊 董绍武 《天文学报》 北大核心 2025年第2期1-11,共11页
为了充分利用不同类型的时间传递链路,需要实现不同采样率下时间传递链路数据的融合应用,提出了一种基于多分辨率分析的数据融合方法.首先对原始数据进行小波分解,把数据分解到统一的分辨率,初步消除高频噪声;然后在不同分辨率下进行Kal... 为了充分利用不同类型的时间传递链路,需要实现不同采样率下时间传递链路数据的融合应用,提出了一种基于多分辨率分析的数据融合方法.首先对原始数据进行小波分解,把数据分解到统一的分辨率,初步消除高频噪声;然后在不同分辨率下进行Kalman滤波;最后通过Mallat快速重构算法得到融合结果.使用该方法处理中国科学院国家授时中心(National Time Service Center,NTSC)和德国联邦物理技术研究所(PhysikalischTechnische Bundesanstalt,PTB)之间的时间传递数据,结果显示融合算法能够处理链路异常或中断造成的数据问题.由于GPS(Global Positioning System)PPP(Precise Point Positioning solutions)链路实测结果性能整体优于TWSTFT(Two-Way Satellite Time and Frequency Transfer)链路,因此用GPS PPP链路测量结果评估融合算法增益.以快速协调世界时(Rapid Realization of Coordinated Universal Time,UTCr)为参考,数据融合结果的准确性增益约1%,日频率稳定度增益优于20%.同时融合算法可以抑制TWSTFT链路的周期噪声,能够有效提高链路的稳定性和鲁棒性. 展开更多
关键词 技术:TWSTFT 技术:GPS PPP 技术:时间传递 方法:小波分解 方法:卡尔曼滤 方法:融合
在线阅读 下载PDF
Wavelet matrix transform for time-series similarity measurement 被引量:2
2
作者 胡志坤 徐飞 +1 位作者 桂卫华 阳春华 《Journal of Central South University》 SCIE EI CAS 2009年第5期802-806,共5页
A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet... A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases. 展开更多
关键词 wavelet transform singular value decomposition inner product transform time-series similarity
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部