In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In this paper,we consider the p-Laplacian Schrödinger-Poisson equation with L^(2)-norm constraint-Δ_(p)u+|u|^(p-2)u+λu+(1/4π|x|*|u|^(2))u=|u|^(q-2)u,x∈R^(3),where 2≤p<3,5p/3<q<p*=3p/3-p,λ>0 is a...In this paper,we consider the p-Laplacian Schrödinger-Poisson equation with L^(2)-norm constraint-Δ_(p)u+|u|^(p-2)u+λu+(1/4π|x|*|u|^(2))u=|u|^(q-2)u,x∈R^(3),where 2≤p<3,5p/3<q<p*=3p/3-p,λ>0 is a Lagrange multiplier.We obtain the critical point of the corresponding functional of the problem on mass constraint by the variational method and the Mountain pass lemma,and then find a normalized solution to this equation.展开更多
To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method...To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.展开更多
Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced...Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.展开更多
In the research of bistatic tomography imaging of translating object, we get a class of generalized Radon transformation. In this paper, first we prove the existence and uniguenness of its solution in theory and poin...In the research of bistatic tomography imaging of translating object, we get a class of generalized Radon transformation. In this paper, first we prove the existence and uniguenness of its solution in theory and point out this problem is ill-posed with an especial example.Secondly by means of multiplicative interpolation functions to approximate models, we constracted regularizing functional. Finally we simplify calculation by Fourier transformation,get regularizing solutions that converge to accurate solution.展开更多
In this paper,we will discuss smoothness of weak solutions for the system of second order differential equations eith non-negative characteristies.First of all,we establish boundary,and interior estimates and then we ...In this paper,we will discuss smoothness of weak solutions for the system of second order differential equations eith non-negative characteristies.First of all,we establish boundary,and interior estimates and then we prove that solutions of regularization problem satisfy Lipschitz condition.展开更多
Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured ...Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.展开更多
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金supported by the National Natural Science Foundation of China(No.12461024)the Natural Science Research Project of Department of Education of Guizhou Province(Nos.QJJ2023012,QJJ2023061,QJJ2023062)the Natural Science Research Project of Guizhou Minzu University(No.GZMUZK[2022]YB06)。
文摘In this paper,we consider the p-Laplacian Schrödinger-Poisson equation with L^(2)-norm constraint-Δ_(p)u+|u|^(p-2)u+λu+(1/4π|x|*|u|^(2))u=|u|^(q-2)u,x∈R^(3),where 2≤p<3,5p/3<q<p*=3p/3-p,λ>0 is a Lagrange multiplier.We obtain the critical point of the corresponding functional of the problem on mass constraint by the variational method and the Mountain pass lemma,and then find a normalized solution to this equation.
文摘To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.
基金supported by the Natural Science Foundation of China (Nos. 11971230, 12071215)the Fundamental Research Funds for the Central Universities(No. NS2018047)the 2019 Graduate Innovation Base(Laboratory)Open Fund of Jiangsu Province(No. Kfjj20190804)
文摘Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.
文摘In the research of bistatic tomography imaging of translating object, we get a class of generalized Radon transformation. In this paper, first we prove the existence and uniguenness of its solution in theory and point out this problem is ill-posed with an especial example.Secondly by means of multiplicative interpolation functions to approximate models, we constracted regularizing functional. Finally we simplify calculation by Fourier transformation,get regularizing solutions that converge to accurate solution.
文摘In this paper,we will discuss smoothness of weak solutions for the system of second order differential equations eith non-negative characteristies.First of all,we establish boundary,and interior estimates and then we prove that solutions of regularization problem satisfy Lipschitz condition.
基金provided by the National Natural Science Foundation of China(Nos.51322401,51309222,51323004,51579239 and 51574223)the Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2014KF03)+2 种基金the State Key Laboratory for GeoMechanics Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and MitigationDeep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1305)China Postdoctoral Science Foundation(Nos.2014M551700and 2013M531424)
文摘Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.