The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the h...The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the hybrid ventilation system applied in bidirectional excavation tunnels with a long inclined shaft,this study has established a full-scale computational fluid dynamics model based on field tests,the Poly-Hexcore method,and the sliding mesh technique.The distribution of wind speed,temperature field,and CO in the tunnel are taken as indices to compare the ventilation efficiency of three ventilation systems(duct,duct-ventilation shaft,duct–ventilated shaft-axial fan).The results show that the hybrid ventilation scheme based on duct-ventilation shaft–axial fan performs the best among the three ventilation systems.Compared to the duct,the wind speed and cooling rate in the tunnel are enhanced by 7.5%–30.6%and 14.1%–17.7%,respectively,for the duct-vent shaft-axial fan condition,and the volume fractions of CO are reduced by 26.9%–73.9%.This contributes to the effective design of combined ventilation for bidirectional excavation tunnels with an inclined shaft,ultimately improving the air quality within the tunnel.展开更多
To reduce carbon intensity, an improved management method balancing the reduction in costs and greenhouse gas(GHG)emissions is required for Tianjin's waste management system. Firstly, six objective functions, name...To reduce carbon intensity, an improved management method balancing the reduction in costs and greenhouse gas(GHG)emissions is required for Tianjin's waste management system. Firstly, six objective functions, namely, cost minimization, GHG minimization, eco-efficiency minimization, cost maximization, GHG maximization and eco-efficiency maximization, are built and subjected to the same constraints with each objective function corresponding to one scenario. Secondly, GHG emissions and costs are derived from the waste flow of each scenario. Thirdly, the range of GHG emissions and costs of other potential scenarios are obtained and plotted through adjusting waste flow with infinitely possible step sizes according to the correlation among the above six scenarios. And the optimal scenario is determined based on this range. The results suggest the following conclusions. 1) The scenarios located on the border between scenario cost minimization and GHG minimization create an optimum curve, and scenario GHG minimization has the smallest eco-efficiency on the curve; 2) Simple pursuit of eco-efficiency minimization using fractional programming may be unreasonable; 3) Balancing GHG emissions from incineration and landfills benefits Tianjin's waste management system as it reduces GHG emissions and costs.展开更多
基金Project(N2022G031)supported by the Science and Technology Research and Development Program Project of China RailwayProjects(2022-Key-23,2021-Special-01A)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(52308419)supported by the National Natural Science Foundation of China。
文摘The breakage and bending of ducts result in a difficulty to cope with ventilation issues in bidirectional excavation tunnels with a long inclined shaft using a single ventilation method based on ducts.To discuss the hybrid ventilation system applied in bidirectional excavation tunnels with a long inclined shaft,this study has established a full-scale computational fluid dynamics model based on field tests,the Poly-Hexcore method,and the sliding mesh technique.The distribution of wind speed,temperature field,and CO in the tunnel are taken as indices to compare the ventilation efficiency of three ventilation systems(duct,duct-ventilation shaft,duct–ventilated shaft-axial fan).The results show that the hybrid ventilation scheme based on duct-ventilation shaft–axial fan performs the best among the three ventilation systems.Compared to the duct,the wind speed and cooling rate in the tunnel are enhanced by 7.5%–30.6%and 14.1%–17.7%,respectively,for the duct-vent shaft-axial fan condition,and the volume fractions of CO are reduced by 26.9%–73.9%.This contributes to the effective design of combined ventilation for bidirectional excavation tunnels with an inclined shaft,ultimately improving the air quality within the tunnel.
基金Project(51406133) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas,ChinaProject supported by Independent Innovation Fund of Tianjin University,China
文摘To reduce carbon intensity, an improved management method balancing the reduction in costs and greenhouse gas(GHG)emissions is required for Tianjin's waste management system. Firstly, six objective functions, namely, cost minimization, GHG minimization, eco-efficiency minimization, cost maximization, GHG maximization and eco-efficiency maximization, are built and subjected to the same constraints with each objective function corresponding to one scenario. Secondly, GHG emissions and costs are derived from the waste flow of each scenario. Thirdly, the range of GHG emissions and costs of other potential scenarios are obtained and plotted through adjusting waste flow with infinitely possible step sizes according to the correlation among the above six scenarios. And the optimal scenario is determined based on this range. The results suggest the following conclusions. 1) The scenarios located on the border between scenario cost minimization and GHG minimization create an optimum curve, and scenario GHG minimization has the smallest eco-efficiency on the curve; 2) Simple pursuit of eco-efficiency minimization using fractional programming may be unreasonable; 3) Balancing GHG emissions from incineration and landfills benefits Tianjin's waste management system as it reduces GHG emissions and costs.