特征提取是目标检测与识别领域的研究热点之一,HOG(Histogram of Oriented Gradient)特征由于其对图像局部信息良好的几何和光照不变性,在行人检测、车牌和人脸识别等计算机视觉邻域得到了广泛应用,但是HOG不具有旋转不变的特性,使得该...特征提取是目标检测与识别领域的研究热点之一,HOG(Histogram of Oriented Gradient)特征由于其对图像局部信息良好的几何和光照不变性,在行人检测、车牌和人脸识别等计算机视觉邻域得到了广泛应用,但是HOG不具有旋转不变的特性,使得该特征在实际应用中存在着一些局限性。针对该问题,提出一种具有旋转不变性的HOG特征提取方法,首先根据图像梯度信息提取主方向并设置为参考方向,接着旋转主方向至参考方向,在旋转后的图像上得到旋转不变的HOG特征。并且设计了一种面向图像匹配的相似性度量准则,它以单个图像块(Block)特征向量为基元,与待匹配图像中对应块及其邻域块特征向量的相似度共同作为度量标准,增强了旋转图像在像素平移情况下的匹配效果。实验结果表明,提出的改进HOG特征具有良好的旋转不变特性。展开更多
行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用...行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。展开更多
现有的大多数特征提取算法在提取人脸特征时,容易受到光照等外界因素的影响,从而导致后期人脸识别率下降。而方向梯度直方图(Histogram of Oriented Gradient,HOG)具有较强的光照鲁棒性,能够很好地减少由光照带来的干扰,但传统HOG在计...现有的大多数特征提取算法在提取人脸特征时,容易受到光照等外界因素的影响,从而导致后期人脸识别率下降。而方向梯度直方图(Histogram of Oriented Gradient,HOG)具有较强的光照鲁棒性,能够很好地减少由光照带来的干扰,但传统HOG在计算梯度幅值和方向时只计算水平和垂直方向上4个像素点对中间像素的影响,当外界环境变化时不能保证稳定性,因此提出一种基于Haar特性的改进HOG的人脸特征提取算法。该算法在计算梯度幅值和方向时考虑水平、垂直以及对角线上8个像素点对中间像素的影响,由于增加计算量导致特征提取时间也随之增加,因此引入Haar,借助Haar型特征运算简单、快捷的特点设计4组Haar型特征编码模式,按照改进的HOG特征计算方式提取人脸特征。在有光照等外界因素影响的FERET人脸数据库和Yale B扩展的人脸测试库中进行实验,实验结果表明,与GFC,LBP和其他文献中的HOG算法相比,该算法对光照具有更好的鲁棒性,能够在光照变化的环境下提高人脸识别率。该算法在FERET探测集fb,fc,dup1和dup2上的识别率分别为95.1%,80.9%,70.1%和63.2%,在Yale B中的识别率为89.1%。展开更多
基金Supported by the National Natural Science Foundation of China(61701069)the Fundamental Research Funds for the Central Univer⁃sities of China(3132019340,3132019200).
文摘特征提取是目标检测与识别领域的研究热点之一,HOG(Histogram of Oriented Gradient)特征由于其对图像局部信息良好的几何和光照不变性,在行人检测、车牌和人脸识别等计算机视觉邻域得到了广泛应用,但是HOG不具有旋转不变的特性,使得该特征在实际应用中存在着一些局限性。针对该问题,提出一种具有旋转不变性的HOG特征提取方法,首先根据图像梯度信息提取主方向并设置为参考方向,接着旋转主方向至参考方向,在旋转后的图像上得到旋转不变的HOG特征。并且设计了一种面向图像匹配的相似性度量准则,它以单个图像块(Block)特征向量为基元,与待匹配图像中对应块及其邻域块特征向量的相似度共同作为度量标准,增强了旋转图像在像素平移情况下的匹配效果。实验结果表明,提出的改进HOG特征具有良好的旋转不变特性。
文摘行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。