期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合学术用户多类行为序列特征的文献下载行为预测研究
1
作者 张晓娟 郭佳润 +1 位作者 杨诗涵 桂思思 《情报学报》 北大核心 2025年第4期482-494,共13页
在学术搜索系统中,根据某学术用户历史搜索行为对该用户在下一时间段中所需文献的数量和时间进行预测,有助于提升用户对学术文献推荐结果的满意度。本文通过挖掘学术用户各类行为序列特征提高学术用户下载行为(下一下载session中的下载... 在学术搜索系统中,根据某学术用户历史搜索行为对该用户在下一时间段中所需文献的数量和时间进行预测,有助于提升用户对学术文献推荐结果的满意度。本文通过挖掘学术用户各类行为序列特征提高学术用户下载行为(下一下载session中的下载次数以及距下一下载session的时间间隔)预测的准确度。首先,本文将学术用户下载行为预测问题转化为时间序列预测问题;其次,分别从学术用户查询重构行为、查询表达式与下载行为三个角度抽取特征,并在此基础上利用LSTM(long short-term memory)模型将学术用户历史session建模为时间序列,从而实现对下载行为的预测;最后,对比分析本文提出特征与已有研究提出特征的预测性能,分别探讨不同特征集合以及单个特征的预测效果。本文提出的特征能提高预测任务的准确度,基于对不同学术用户的聚类,在不同类簇上训练得到的LSTM模型具有最佳的整体预测性能。其中,查询表达式相关特征对下一下载session中的下载次数预测效果最佳,下载行为相关特征对距下一下载session的时间间隔预测效果最佳。 展开更多
关键词 学术用户 文献下载行为预测 日志会话 学术搜索 特征挖掘
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部