文档表示模型是文本自动处理的基础,是将非结构化的文本数据转化为结构化数据的有效手段。然而,目前通用的空间向量模型(Vector Space Model,VSM)是以单个的词汇为基础的文档表示模型,因其忽略了词间的关联关系,导致文本挖掘的准确率难...文档表示模型是文本自动处理的基础,是将非结构化的文本数据转化为结构化数据的有效手段。然而,目前通用的空间向量模型(Vector Space Model,VSM)是以单个的词汇为基础的文档表示模型,因其忽略了词间的关联关系,导致文本挖掘的准确率难以得到很大的提升。该文以词共现分析为基础,讨论了文档主题与词的二阶关系之间的潜在联系,进而定义了词共现度及与文档主题相关度的量化计算方法,利用关联规则算法抽取出文档集上的词共现组合,提出了基于词共现组合的文档向量主题表示模型(Co-occurrence Term based Vector SpaceModel,CTVSM),定义了基于CTVSM的文档相似度。实验表明,CTVSM能够准确反映文档之间的相关关系,比经典的文档向量空间模型(Vector Space Model,VSM)具有更强的主题区分能力。展开更多
文档的扭曲矫正是进行文档OCR(Optical Character Recognition)的基础步骤,对提高OCR的准确率有重要作用。文档图像的扭曲矫正常常依赖于文本的提取,然而目前文档图像矫正算法大都无法对复杂文档中的文本进行准确定位和分析,导致其矫正...文档的扭曲矫正是进行文档OCR(Optical Character Recognition)的基础步骤,对提高OCR的准确率有重要作用。文档图像的扭曲矫正常常依赖于文本的提取,然而目前文档图像矫正算法大都无法对复杂文档中的文本进行准确定位和分析,导致其矫正效果不理想。针对此问题,提出了一种基于全卷积网络的文字检测框架,并使用合成文档对网络进行针对性训练,可实现对字符、词、文本行三级文本信息的准确获取,进而对文本进行自适应采样并利用三次函数对页面进行三维建模,将矫正问题转化为模型参数优化问题,达到矫正复杂文档图像的目的。使用合成扭曲文档以及真实测试数据进行矫正实验,结果表明,提出的矫正方法能够对复杂文档进行精确的文本提取,明显改善了复杂文档图像矫正后的视觉效果,相比于其他算法,该算法矫正后OCR的准确率得到显著提高。展开更多
文摘文档表示模型是文本自动处理的基础,是将非结构化的文本数据转化为结构化数据的有效手段。然而,目前通用的空间向量模型(Vector Space Model,VSM)是以单个的词汇为基础的文档表示模型,因其忽略了词间的关联关系,导致文本挖掘的准确率难以得到很大的提升。该文以词共现分析为基础,讨论了文档主题与词的二阶关系之间的潜在联系,进而定义了词共现度及与文档主题相关度的量化计算方法,利用关联规则算法抽取出文档集上的词共现组合,提出了基于词共现组合的文档向量主题表示模型(Co-occurrence Term based Vector SpaceModel,CTVSM),定义了基于CTVSM的文档相似度。实验表明,CTVSM能够准确反映文档之间的相关关系,比经典的文档向量空间模型(Vector Space Model,VSM)具有更强的主题区分能力。
文摘文档的扭曲矫正是进行文档OCR(Optical Character Recognition)的基础步骤,对提高OCR的准确率有重要作用。文档图像的扭曲矫正常常依赖于文本的提取,然而目前文档图像矫正算法大都无法对复杂文档中的文本进行准确定位和分析,导致其矫正效果不理想。针对此问题,提出了一种基于全卷积网络的文字检测框架,并使用合成文档对网络进行针对性训练,可实现对字符、词、文本行三级文本信息的准确获取,进而对文本进行自适应采样并利用三次函数对页面进行三维建模,将矫正问题转化为模型参数优化问题,达到矫正复杂文档图像的目的。使用合成扭曲文档以及真实测试数据进行矫正实验,结果表明,提出的矫正方法能够对复杂文档进行精确的文本提取,明显改善了复杂文档图像矫正后的视觉效果,相比于其他算法,该算法矫正后OCR的准确率得到显著提高。