期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于文档分布式表达的新浪微博情感分类研究 被引量:16
1
作者 杨宇婷 王名扬 +1 位作者 田宪允 李鹏宇 《情报杂志》 CSSCI 北大核心 2016年第2期151-156,共6页
[目的/意义]拥有庞大用户群体的新浪微博每天都产生海量的文本数据,对其进行情感分类有助于分析社会的舆论走向,为舆情监测提供帮助。其中,如何挖掘微博中的文本特征与情感信息是微博情感分类研究的关键。[方法/过程]将能有效考察上下... [目的/意义]拥有庞大用户群体的新浪微博每天都产生海量的文本数据,对其进行情感分类有助于分析社会的舆论走向,为舆情监测提供帮助。其中,如何挖掘微博中的文本特征与情感信息是微博情感分类研究的关键。[方法/过程]将能有效考察上下文语境的基于文档分布式的特征表达方法引入到微博情感分类研究中,通过综合考虑上下文的语义、语序和情感信息,将微博文本转化为高维空间的特征向量,然后利用SVM分类器判断文本的情感极性。[结果/结论]实验表明,对微博文本进行文档分布式特征表达后,其分类准确率可达90.46%,优于其他特征表达方法。 展开更多
关键词 微博 情感分类 文档分布式表达 Doc2vec
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部