期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多文本特征融合的中文微博的立场检测
被引量:
26
1
作者
奠雨洁
金琴
吴慧敏
《计算机工程与应用》
CSCD
北大核心
2017年第21期77-84,共8页
微博立场检测是判断微博作者对某一个话题的态度是支持、反对或中立。在基于监督学习的分类框架上,扩展并提出基于多文本特征融合的中文微博的立场检测方法。首先探究了基于词频统计的特征(词袋特征(Bag-ofWords,Bo W)、基于同义词典的...
微博立场检测是判断微博作者对某一个话题的态度是支持、反对或中立。在基于监督学习的分类框架上,扩展并提出基于多文本特征融合的中文微博的立场检测方法。首先探究了基于词频统计的特征(词袋特征(Bag-ofWords,Bo W)、基于同义词典的词袋特征、考虑词与立场标签共现关系的特征)和文本深度特征(词向量、字向量)。之后使用支持向量机,随机森林和梯度提升决策树对上述特征进行立场分类。最后,结合所有特征分类器进行后期融合。实验表明,文中提出的特征对于不同话题下的微博立场检测的结果都有提升,且文本深度特征和基于词频统计的特征能够捕捉到文本的不同信息,在立场检测中是互补的。基于本文方法的微博立场检测系统在2016年自然语言处理与中文计算会议(NLPCC2016)的中文微博立场检测评测任务中取得了最好的结果。
展开更多
关键词
立场检测
情感分析
文本特征表示
微博
文本
分类
在线阅读
下载PDF
职称材料
改进深度卷积生成式对抗网络的文本生成图像
2
作者
李云红
朱绵云
+3 位作者
任劼
苏雪平
周小计
于惠康
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2023年第8期1875-1883,共9页
针对深度卷积生成式对抗网络(DCGAN)模型高维文本输入表示的稀疏性导致以文本为条件生成的图像结构缺失和图像不真实的问题,提出了一种改进深度卷积生成式对抗网络模型CA-DCGAN。采用深度卷积网络和循环文本编码器对输入的文本进行编码...
针对深度卷积生成式对抗网络(DCGAN)模型高维文本输入表示的稀疏性导致以文本为条件生成的图像结构缺失和图像不真实的问题,提出了一种改进深度卷积生成式对抗网络模型CA-DCGAN。采用深度卷积网络和循环文本编码器对输入的文本进行编码,得到文本的特征向量表示。引入条件增强(CA)模型,通过文本特征向量的均值和协方差矩阵产生附加的条件变量,代替原来的高维文本特征向量。将条件变量与随机噪声结合作为生成器的输入,并在生成器的损失中额外加入KL损失正则化项,避免模型训练过拟合,使模型可以更好的收敛,在判别器中使用谱约束(SN)层,防止其梯度下降太快造成生成器与判别器不平衡训练而发生模式崩溃的问题。实验验证结果表明:所提模型在Oxford-102-flowers和CUB-200数据集上生成的图像质量较alignDRAW、GAN-CLS、GAN-INT-CLS、StackGAN(64×64)、StackGAN-v1(64×64)模型更好且接近于真实样本,初始得分值最低分别提高了10.9%和5.6%,最高分别提高了41.4%和37.5%,FID值最低分别降低了11.4%和8.4%,最高分别降低了43.9%和42.5%,进一步表明了所提模型的有效性。
展开更多
关键词
深度卷积生成式对抗网络
文本
生成图像
文本特征表示
条件增强
KL正则化
在线阅读
下载PDF
职称材料
PosNet:基于位置的因果关系抽取网络
被引量:
1
3
作者
朱广丽
许鑫
+2 位作者
张顺香
吴厚月
黄菊
《计算机科学》
CSCD
北大核心
2022年第12期305-311,共7页
因果关系抽取是一种从文本中抽取因果实体对的自然语言处理技术,被广泛应用于金融、医疗等领域。传统的因果关系抽取技术需要人工选取文本特征进行因果匹配或使用神经网络多次提取特征,导致模型结构较为复杂,抽取效率不高。针对这一问题...
因果关系抽取是一种从文本中抽取因果实体对的自然语言处理技术,被广泛应用于金融、医疗等领域。传统的因果关系抽取技术需要人工选取文本特征进行因果匹配或使用神经网络多次提取特征,导致模型结构较为复杂,抽取效率不高。针对这一问题,提出一种基于位置的因果关系抽取网络(Position-based Causal Extraction Network,PosNet),以期提高因果关系的抽取效率。首先,预处理文本,构建多粒度文本特征作为网络的输入;然后,将文本特征传入位置预测网络,使用经典的浅层卷积神经网络预测因果实体的开始位置和结束位置;最后,通过组装算法按起始位置组装因果实体,抽取出全部因果实体对。实验结果证明PosNet可以提升因果关系抽取的效率。
展开更多
关键词
因果关系抽取
位置信息
文本特征表示
在线阅读
下载PDF
职称材料
题名
基于多文本特征融合的中文微博的立场检测
被引量:
26
1
作者
奠雨洁
金琴
吴慧敏
机构
中国人民大学信息学院
出处
《计算机工程与应用》
CSCD
北大核心
2017年第21期77-84,共8页
基金
国家重点研发计划项目(No.2016YFB1001202)
文摘
微博立场检测是判断微博作者对某一个话题的态度是支持、反对或中立。在基于监督学习的分类框架上,扩展并提出基于多文本特征融合的中文微博的立场检测方法。首先探究了基于词频统计的特征(词袋特征(Bag-ofWords,Bo W)、基于同义词典的词袋特征、考虑词与立场标签共现关系的特征)和文本深度特征(词向量、字向量)。之后使用支持向量机,随机森林和梯度提升决策树对上述特征进行立场分类。最后,结合所有特征分类器进行后期融合。实验表明,文中提出的特征对于不同话题下的微博立场检测的结果都有提升,且文本深度特征和基于词频统计的特征能够捕捉到文本的不同信息,在立场检测中是互补的。基于本文方法的微博立场检测系统在2016年自然语言处理与中文计算会议(NLPCC2016)的中文微博立场检测评测任务中取得了最好的结果。
关键词
立场检测
情感分析
文本特征表示
微博
文本
分类
Keywords
stance detection
sentiment analysis
text feature representations
Chinese Microblogs
text classification
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
改进深度卷积生成式对抗网络的文本生成图像
2
作者
李云红
朱绵云
任劼
苏雪平
周小计
于惠康
机构
西安工程大学电子信息学院
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2023年第8期1875-1883,共9页
基金
国家自然科学基金(61902301)
陕西省自然科学基础研究计划重点项目(2022JZ-35)。
文摘
针对深度卷积生成式对抗网络(DCGAN)模型高维文本输入表示的稀疏性导致以文本为条件生成的图像结构缺失和图像不真实的问题,提出了一种改进深度卷积生成式对抗网络模型CA-DCGAN。采用深度卷积网络和循环文本编码器对输入的文本进行编码,得到文本的特征向量表示。引入条件增强(CA)模型,通过文本特征向量的均值和协方差矩阵产生附加的条件变量,代替原来的高维文本特征向量。将条件变量与随机噪声结合作为生成器的输入,并在生成器的损失中额外加入KL损失正则化项,避免模型训练过拟合,使模型可以更好的收敛,在判别器中使用谱约束(SN)层,防止其梯度下降太快造成生成器与判别器不平衡训练而发生模式崩溃的问题。实验验证结果表明:所提模型在Oxford-102-flowers和CUB-200数据集上生成的图像质量较alignDRAW、GAN-CLS、GAN-INT-CLS、StackGAN(64×64)、StackGAN-v1(64×64)模型更好且接近于真实样本,初始得分值最低分别提高了10.9%和5.6%,最高分别提高了41.4%和37.5%,FID值最低分别降低了11.4%和8.4%,最高分别降低了43.9%和42.5%,进一步表明了所提模型的有效性。
关键词
深度卷积生成式对抗网络
文本
生成图像
文本特征表示
条件增强
KL正则化
Keywords
deep convolutional generative adversarial network
text-to-image synthesis
text feature representation
conditional augmentation
KL regularization
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
PosNet:基于位置的因果关系抽取网络
被引量:
1
3
作者
朱广丽
许鑫
张顺香
吴厚月
黄菊
机构
安徽理工大学计算机科学与工程学院
出处
《计算机科学》
CSCD
北大核心
2022年第12期305-311,共7页
基金
国家自然科学基金面上项目(62076006)
安徽高校协同创新项目(GXXT-2021-008)
安徽省重点研发计划国际科技合作专项(202004b11020029)。
文摘
因果关系抽取是一种从文本中抽取因果实体对的自然语言处理技术,被广泛应用于金融、医疗等领域。传统的因果关系抽取技术需要人工选取文本特征进行因果匹配或使用神经网络多次提取特征,导致模型结构较为复杂,抽取效率不高。针对这一问题,提出一种基于位置的因果关系抽取网络(Position-based Causal Extraction Network,PosNet),以期提高因果关系的抽取效率。首先,预处理文本,构建多粒度文本特征作为网络的输入;然后,将文本特征传入位置预测网络,使用经典的浅层卷积神经网络预测因果实体的开始位置和结束位置;最后,通过组装算法按起始位置组装因果实体,抽取出全部因果实体对。实验结果证明PosNet可以提升因果关系抽取的效率。
关键词
因果关系抽取
位置信息
文本特征表示
Keywords
Causal relation extraction
Position information
Text feature representation
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多文本特征融合的中文微博的立场检测
奠雨洁
金琴
吴慧敏
《计算机工程与应用》
CSCD
北大核心
2017
26
在线阅读
下载PDF
职称材料
2
改进深度卷积生成式对抗网络的文本生成图像
李云红
朱绵云
任劼
苏雪平
周小计
于惠康
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2023
0
在线阅读
下载PDF
职称材料
3
PosNet:基于位置的因果关系抽取网络
朱广丽
许鑫
张顺香
吴厚月
黄菊
《计算机科学》
CSCD
北大核心
2022
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部