期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于动态网络的文本敏感信息感知脑响应检测模型 被引量:1
1
作者 李慧敏 曾颖 +2 位作者 童莉 鲁润南 闫镔 《传感器与微系统》 CSCD 北大核心 2024年第4期152-156,共5页
针对文本敏感信息感知过程复杂和个体差异大造成敏感信息感知脑响应潜伏期不确定性的问题,提出了一种基于动态卷积神经网络的脑响应检测模型——DyCNN_CBAM。该模型通过增加的动态卷积模块,让每层的卷积参数在训练的时候随着输入可变,... 针对文本敏感信息感知过程复杂和个体差异大造成敏感信息感知脑响应潜伏期不确定性的问题,提出了一种基于动态卷积神经网络的脑响应检测模型——DyCNN_CBAM。该模型通过增加的动态卷积模块,让每层的卷积参数在训练的时候随着输入可变,可提升模型的尺寸与容量。然后在模型第一、二层后增加的注意力机制模块,自动计算贡献度较高的时空信息。实验结果表明:该模型比现有的单尺度模型平均分类准确率提高了4%,F1分数提高6.7%,同时比现有多尺度网络平均分类准确率提高了2%,F1分数提高1.2%。此外,在公开数据集上取得最好的F1分数。由此说明,该网络更够适应文本敏感信息感知脑信号潜伏期抖动性,有效地提升了文本敏感信息检测模型的稳定性。 展开更多
关键词 文本敏感信息 脑电信号 目标检测 动态卷积神经网络 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部