期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析 被引量:46
1
作者 程艳 尧磊波 +5 位作者 张光河 唐天伟 项国雄 陈豪迈 冯悦 蔡壮 《计算机研究与发展》 EI CSCD 北大核心 2020年第12期2583-2595,共13页
近年来,卷积神经网络(convolutional neural network,CNN)和循环神经网络(recurrent neural network,RNN)已在文本情感分析领域得到广泛应用,并取得了不错的效果.然而,文本之间存在上下文依赖问题,虽然CNN能提取到句子连续词间的局部信... 近年来,卷积神经网络(convolutional neural network,CNN)和循环神经网络(recurrent neural network,RNN)已在文本情感分析领域得到广泛应用,并取得了不错的效果.然而,文本之间存在上下文依赖问题,虽然CNN能提取到句子连续词间的局部信息,但是会忽略词语之间上下文语义信息;双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络不仅能够解决传统RNN模型存在的梯度消失或梯度爆炸问题,而且还能很好地弥补CNN不能有效提取长文本的上下文语义信息的缺陷,但却无法像CNN那样很好地提取句子局部特征.因此提出一种基于注意力机制的多通道CNN和双向门控循环单元(MC-AttCNN-AttBiGRU)的神经网络模型.该模型不仅能够通过注意力机制关注到句子中对情感极性分类重要的词语,而且结合了CNN提取文本局部特征和BiGRU网络提取长文本上下文语义信息的优势,提高了模型的文本特征提取能力.在谭松波酒店评论数据集和IMDB数据集上的实验结果表明:提出的模型相较于其他几种基线模型可以提取到更丰富的文本特征,可以取得比其他基线模型更好的分类效果. 展开更多
关键词 卷积神经网络 文本情感倾向性分析 双向门控循环单元 注意力机制 多通道
在线阅读 下载PDF
基于双向LSTM模型的文本情感分类 被引量:33
2
作者 任勉 甘刚 《计算机工程与设计》 北大核心 2018年第7期2064-2068,共5页
为解决文本情感分类研究中传统循环神经网络模型存在梯度消失和爆炸问题,提出一种基于双向长短时记忆循环神经网络模型(Bi-LSTM)。通过双向传播机制获取文本中完整的上下文信息,采用CBOW模型训练词向量,减小词向量间的稀疏度,结合栈式... 为解决文本情感分类研究中传统循环神经网络模型存在梯度消失和爆炸问题,提出一种基于双向长短时记忆循环神经网络模型(Bi-LSTM)。通过双向传播机制获取文本中完整的上下文信息,采用CBOW模型训练词向量,减小词向量间的稀疏度,结合栈式自编码深度神经网络作为分类器。实验结果表明,Bi-LSTM模型比传统循环神经网络LSTM模型分类效果更好,对比实验中Bi-LSTM2能达到更优的召回率和准确率。 展开更多
关键词 双向长短时记忆循环神经网络 词向量 长短时记忆网络 循环神经网络 文本情感倾向性分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部