期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于竞争神经网络的全局K-Medoids聚类算法研究
被引量:
2
1
作者
曹勇
王兆辉
+1 位作者
高琦
甄丽红
《组合机床与自动化加工技术》
北大核心
2019年第6期1-4,8,共5页
针对全局K-Medoids算法在处理大规模数据聚类分析时搜索效率低的问题,提出了基于竞争神经网络的全局K-Medoids聚类算法。由于神经网络算法对输入模式要求为数值向量,不适合处理文本序列数据的聚类问题,通过定义文本序列数据在聚类分析...
针对全局K-Medoids算法在处理大规模数据聚类分析时搜索效率低的问题,提出了基于竞争神经网络的全局K-Medoids聚类算法。由于神经网络算法对输入模式要求为数值向量,不适合处理文本序列数据的聚类问题,通过定义文本序列数据在聚类分析时的属性描述方式,利用竞争神经网络对数据进行初始分类,在此基础上运行全局K-Medoids算法进行详细的分类,使算法适合于处理文本序列数据聚类问题。文章分别利用UCI数据库中的8组实验数据和机械加工企业工艺数据中的工艺路线数据进行算法验证,结果证明该方法的效率和精度均高于K-Medoids算法和全局K-Medoids算法。
展开更多
关键词
全局K-Medoids算法
竞争神经网络
聚类分析
文本序列数据
属性描述
在线阅读
下载PDF
职称材料
题名
基于竞争神经网络的全局K-Medoids聚类算法研究
被引量:
2
1
作者
曹勇
王兆辉
高琦
甄丽红
机构
山东大学机械工程学院CAD/CAM研究所
山东省科技发展服务推进中心
出处
《组合机床与自动化加工技术》
北大核心
2019年第6期1-4,8,共5页
基金
"十三五装备"预研领域基金项目(61409230102)
文摘
针对全局K-Medoids算法在处理大规模数据聚类分析时搜索效率低的问题,提出了基于竞争神经网络的全局K-Medoids聚类算法。由于神经网络算法对输入模式要求为数值向量,不适合处理文本序列数据的聚类问题,通过定义文本序列数据在聚类分析时的属性描述方式,利用竞争神经网络对数据进行初始分类,在此基础上运行全局K-Medoids算法进行详细的分类,使算法适合于处理文本序列数据聚类问题。文章分别利用UCI数据库中的8组实验数据和机械加工企业工艺数据中的工艺路线数据进行算法验证,结果证明该方法的效率和精度均高于K-Medoids算法和全局K-Medoids算法。
关键词
全局K-Medoids算法
竞争神经网络
聚类分析
文本序列数据
属性描述
Keywords
global K-Medoids
competitive neural network
clustering analysis
text sequence data
attribute description
分类号
TH166 [机械工程—机械制造及自动化]
TG506 [金属学及工艺—金属切削加工及机床]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于竞争神经网络的全局K-Medoids聚类算法研究
曹勇
王兆辉
高琦
甄丽红
《组合机床与自动化加工技术》
北大核心
2019
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部