期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
TFLS-BiGRU-ATT:一种简单有效的中文短文本关系抽取模型 被引量:1
1
作者 刘成星 张超群 +1 位作者 代林林 张龙昊 《中文信息学报》 CSCD 北大核心 2023年第6期115-127,共13页
关系抽取是信息抽取的核心任务,如何从海量的中文短文本中快速准确地抽取出重要的关系特征,成为中文短文本关系抽取任务的难点。针对这一问题,该文提出一种基于注意力机制的双向门控循环(Bidirectional Gated Recurrent Units,BiGRU)神... 关系抽取是信息抽取的核心任务,如何从海量的中文短文本中快速准确地抽取出重要的关系特征,成为中文短文本关系抽取任务的难点。针对这一问题,该文提出一种基于注意力机制的双向门控循环(Bidirectional Gated Recurrent Units,BiGRU)神经网络模型TFLS-BiGRU-ATT来对中文短文本中的关系特征进行抽取。首先,该模型使用所提出的文本定长选择(Text Fixed Length Selection,TFLS)策略对关系文本进行定长处理,然后利用双层BiGRU网络对定长文本进行关系特征提取,再通过所提出的注意力机制对关系特征进行权重的相应分配,最终对不同权重的特征信息进行实体间关系的抽取。基准实验的结果表明,TFLS-BiGRU-ATT模型在DuIE、COAE-2016-Task3、FinRE、SanWen四个具有不同特征的中文短文本数据集上获得的F1值分别达到93.62%、91.38%、49.35%、62.98%,显著优于对比模型。此外,还通过消融实验和定长选择实验进一步验证TFLS-BiGRUATT模型能够有效地提高中文短文本关系抽取的效果,说明该方法的可行性和有效性。 展开更多
关键词 中文短文本 关系抽取 文本定长选择 双向门控循环神经网络 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部