期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
高斯混合模型与文本图卷积网络结合的虚假评论识别算法
1
作者
王星
刘贵娟
陈志豪
《计算机应用》
CSCD
北大核心
2024年第2期360-368,共9页
针对文本图卷积网络(Text GCN)窗口边权阈值策略不足的问题,为了更精准地挖掘相关的词关联结构、提高预测精度,提出一种高斯混合模型(GMM)与Text GCN结合的虚假评论识别算法F-Text GCN。首先,利用GMM分离噪声边权分布的特性,提高虚假评...
针对文本图卷积网络(Text GCN)窗口边权阈值策略不足的问题,为了更精准地挖掘相关的词关联结构、提高预测精度,提出一种高斯混合模型(GMM)与Text GCN结合的虚假评论识别算法F-Text GCN。首先,利用GMM分离噪声边权分布的特性,提高虚假评论在训练数据上相对正常评论数不足的边信号强度;然后,考虑到信源的多样性,综合文档、词汇和评论以及非文本特征构造邻接矩阵;最后,通过Text GCN的谱分解提取邻接矩阵的虚假评论关联结构实施预测。根据国内某大型电商平台采集的126086条实际中文评论数据开展实证研究,实验结果表明,F-Text GCN识别虚假评论的F1值达到82.92%,与预训练表征模型BERT和文本卷积神经网络相比分别提升了10.46%和11.60%,相较于只使用评论文本信源的Text GCN模型F1值提升了2.94%;研究了高仿虚假评论的预测错误率,在支持向量机(SVM)作用后难识别的评论样本上尝试二次识别,F-Text GCN整体预测准确率可达94.71%,相较于Text GCN和SVM,在识别准确率上分别提升了2.91%和14.54%。研究发现,虚假评论的二阶图邻居结构显示出较强的干预消费者决策的词汇,这表明所提算法特别适用于提取用于虚假评论检测的长程词语搭配结构和全局句子特征模式变化的场景。
展开更多
关键词
高斯混合模型
虚假评论识别
文本图卷积神经网络
邻接矩阵
词汇共现
网络
在线阅读
下载PDF
职称材料
基于PKUSEG-Text-GCN的肿瘤疾病预测模型
2
作者
高志玲
赵新宇
《计算机工程与科学》
北大核心
2025年第7期1303-1311,共9页
当前疾病预测模型仅关注病历文本的局部信息以及上下文信息,缺乏对全局信息的考虑,由此导致预测结果准确率不高。利用图神经网络关注全局信息的特点,提出将图卷积神经网络(GCN)用于中文电子病历的肿瘤疾病预测。首先,利用医学领域分词...
当前疾病预测模型仅关注病历文本的局部信息以及上下文信息,缺乏对全局信息的考虑,由此导致预测结果准确率不高。利用图神经网络关注全局信息的特点,提出将图卷积神经网络(GCN)用于中文电子病历的肿瘤疾病预测。首先,利用医学领域分词工具包PKUSEG对中文电子病历进行分词;其次,通过病历与词的共现关系和病历文本中词与词之间的关系,建立文本图;最后,基于该医学文本图利用图卷积神经网络(Text-GCN)对文本图的特征进行学习,将学习到的模型用于肿瘤疾病预测。实验结果显示,所提模型相比多个模型中的最优模型准确率提升了6%。同时,当数据较少的时候准确率并不会明显下降,表明该模型在电子病历较少的情况下仍具有很好的鲁棒性。
展开更多
关键词
文本图卷积神经网络
中文分词
肿瘤致病分析
肿瘤疾病预测
在线阅读
下载PDF
职称材料
题名
高斯混合模型与文本图卷积网络结合的虚假评论识别算法
1
作者
王星
刘贵娟
陈志豪
机构
中国人民大学应用统计科学研究中心
中国人民大学统计学院
出处
《计算机应用》
CSCD
北大核心
2024年第2期360-368,共9页
基金
国家社会科学基金重点项目(18ATJ004)。
文摘
针对文本图卷积网络(Text GCN)窗口边权阈值策略不足的问题,为了更精准地挖掘相关的词关联结构、提高预测精度,提出一种高斯混合模型(GMM)与Text GCN结合的虚假评论识别算法F-Text GCN。首先,利用GMM分离噪声边权分布的特性,提高虚假评论在训练数据上相对正常评论数不足的边信号强度;然后,考虑到信源的多样性,综合文档、词汇和评论以及非文本特征构造邻接矩阵;最后,通过Text GCN的谱分解提取邻接矩阵的虚假评论关联结构实施预测。根据国内某大型电商平台采集的126086条实际中文评论数据开展实证研究,实验结果表明,F-Text GCN识别虚假评论的F1值达到82.92%,与预训练表征模型BERT和文本卷积神经网络相比分别提升了10.46%和11.60%,相较于只使用评论文本信源的Text GCN模型F1值提升了2.94%;研究了高仿虚假评论的预测错误率,在支持向量机(SVM)作用后难识别的评论样本上尝试二次识别,F-Text GCN整体预测准确率可达94.71%,相较于Text GCN和SVM,在识别准确率上分别提升了2.91%和14.54%。研究发现,虚假评论的二阶图邻居结构显示出较强的干预消费者决策的词汇,这表明所提算法特别适用于提取用于虚假评论检测的长程词语搭配结构和全局句子特征模式变化的场景。
关键词
高斯混合模型
虚假评论识别
文本图卷积神经网络
邻接矩阵
词汇共现
网络
Keywords
Gaussian Mixture Model(GMM)
fake review detection
Text Graph Convolutional Network(Text GCN)
adjacency matrix
co-occurrence word network
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于PKUSEG-Text-GCN的肿瘤疾病预测模型
2
作者
高志玲
赵新宇
机构
西北师范大学计算机科学与工程学院
新华三技术有限公司
出处
《计算机工程与科学》
北大核心
2025年第7期1303-1311,共9页
基金
国家自然科学基金(62363031)。
文摘
当前疾病预测模型仅关注病历文本的局部信息以及上下文信息,缺乏对全局信息的考虑,由此导致预测结果准确率不高。利用图神经网络关注全局信息的特点,提出将图卷积神经网络(GCN)用于中文电子病历的肿瘤疾病预测。首先,利用医学领域分词工具包PKUSEG对中文电子病历进行分词;其次,通过病历与词的共现关系和病历文本中词与词之间的关系,建立文本图;最后,基于该医学文本图利用图卷积神经网络(Text-GCN)对文本图的特征进行学习,将学习到的模型用于肿瘤疾病预测。实验结果显示,所提模型相比多个模型中的最优模型准确率提升了6%。同时,当数据较少的时候准确率并不会明显下降,表明该模型在电子病历较少的情况下仍具有很好的鲁棒性。
关键词
文本图卷积神经网络
中文分词
肿瘤致病分析
肿瘤疾病预测
Keywords
text graph convolutional network
Chinese word segmentation
tumor disease analysis
tumor disease prediction
分类号
TP182 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
高斯混合模型与文本图卷积网络结合的虚假评论识别算法
王星
刘贵娟
陈志豪
《计算机应用》
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
2
基于PKUSEG-Text-GCN的肿瘤疾病预测模型
高志玲
赵新宇
《计算机工程与科学》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部