期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
高斯混合模型与文本图卷积网络结合的虚假评论识别算法
1
作者 王星 刘贵娟 陈志豪 《计算机应用》 CSCD 北大核心 2024年第2期360-368,共9页
针对文本图卷积网络(Text GCN)窗口边权阈值策略不足的问题,为了更精准地挖掘相关的词关联结构、提高预测精度,提出一种高斯混合模型(GMM)与Text GCN结合的虚假评论识别算法F-Text GCN。首先,利用GMM分离噪声边权分布的特性,提高虚假评... 针对文本图卷积网络(Text GCN)窗口边权阈值策略不足的问题,为了更精准地挖掘相关的词关联结构、提高预测精度,提出一种高斯混合模型(GMM)与Text GCN结合的虚假评论识别算法F-Text GCN。首先,利用GMM分离噪声边权分布的特性,提高虚假评论在训练数据上相对正常评论数不足的边信号强度;然后,考虑到信源的多样性,综合文档、词汇和评论以及非文本特征构造邻接矩阵;最后,通过Text GCN的谱分解提取邻接矩阵的虚假评论关联结构实施预测。根据国内某大型电商平台采集的126086条实际中文评论数据开展实证研究,实验结果表明,F-Text GCN识别虚假评论的F1值达到82.92%,与预训练表征模型BERT和文本卷积神经网络相比分别提升了10.46%和11.60%,相较于只使用评论文本信源的Text GCN模型F1值提升了2.94%;研究了高仿虚假评论的预测错误率,在支持向量机(SVM)作用后难识别的评论样本上尝试二次识别,F-Text GCN整体预测准确率可达94.71%,相较于Text GCN和SVM,在识别准确率上分别提升了2.91%和14.54%。研究发现,虚假评论的二阶图邻居结构显示出较强的干预消费者决策的词汇,这表明所提算法特别适用于提取用于虚假评论检测的长程词语搭配结构和全局句子特征模式变化的场景。 展开更多
关键词 高斯混合模型 虚假评论识别 文本图卷积神经网络 邻接矩阵 词汇共现网络
在线阅读 下载PDF
融合文本图卷积和集成学习的文本分类方法 被引量:6
2
作者 周玄郎 邱卫根 张立臣 《计算机应用研究》 CSCD 北大核心 2022年第9期2621-2625,共5页
为了提高文本分类的准确率并解决文本图卷积神经网络对节点特征利用不足的问题,提出了一种新的文本分类模型,其内在融合了文本图卷积和Stacking集成学习方法的优点。该模型首先通过文本图卷积神经网络学习文档和词的全局表达以及文档的... 为了提高文本分类的准确率并解决文本图卷积神经网络对节点特征利用不足的问题,提出了一种新的文本分类模型,其内在融合了文本图卷积和Stacking集成学习方法的优点。该模型首先通过文本图卷积神经网络学习文档和词的全局表达以及文档的语法结构信息,再通过集成学习对文本图卷积提取的特征进行二次学习,以弥补文本图卷积节点特征利用不足的问题,提升单标签文本分类的准确率以及整个模型泛化能力。为了降低集成学习的时间消耗,移除了集成学习中的k折交叉验证机制,融合算法实现了文本图卷积和Stacking集成学习方法的关联。在R8、R52、MR、Ohsumed、20NG等数据集上的分类效果相对于传统的分类模型分别提升了1.5%、2.5%、11%、12%、7%以上,该方法在同领域的分类算法比较中表现优异。 展开更多
关键词 文本表示 文本分类 文本图卷积 集成学习 融合模型
在线阅读 下载PDF
基于改进归纳式图卷积网络的文本分类方法 被引量:1
3
作者 赵钦 郑成博 《计算机工程与设计》 北大核心 2023年第4期1144-1150,共7页
针对图嵌入式文本分类方法在预测性能和归纳能力方面的缺陷,在文本图卷积网络(TextGCN)的基础上,进行适当改进。结合预测文本嵌入(PTE)的高效训练和归纳性,在各个网络层中使用不同的图;通过异质图卷积网络架构来学习特征嵌入,利用习得... 针对图嵌入式文本分类方法在预测性能和归纳能力方面的缺陷,在文本图卷积网络(TextGCN)的基础上,进行适当改进。结合预测文本嵌入(PTE)的高效训练和归纳性,在各个网络层中使用不同的图;通过异质图卷积网络架构来学习特征嵌入,利用习得的特征进行归纳推理。实验结果表明,在大量训练样本标注的情况下,所提方法取得了与其它方法相当或稍优的性能。在少量训练样本标注的情况下,所提方法表现更优,性能增益范围为2%~7%,支持更快的训练和泛化性。 展开更多
关键词 文本分类 预测性能 文本图卷积网络 异质图卷网络 预测文本嵌入 归纳推理 特征嵌入
在线阅读 下载PDF
多尺度语义感知和注意力融合的多模态方面级情感分析模型 被引量:1
4
作者 杨丽莎 马常霞 +4 位作者 仲兆满 周子豪 周志耀 胡文彬 赵雪峰 《南京大学学报(自然科学版)》 北大核心 2025年第2期223-236,共14页
多模态方面级情感分析模型在特征提取过程中可能过度依赖文本模态,而忽视文本与图像内容潜在的语义关联.由于模态之间的异质编码属性和信息质量差异,无法执行有效的跨模态交互.为了解决这一问题,提出一种多尺度语义感知和注意力融合模型... 多模态方面级情感分析模型在特征提取过程中可能过度依赖文本模态,而忽视文本与图像内容潜在的语义关联.由于模态之间的异质编码属性和信息质量差异,无法执行有效的跨模态交互.为了解决这一问题,提出一种多尺度语义感知和注意力融合模型(Multiscale Semantic Perception and Attention Fusion Model,MSPAF).首先,充分挖掘多尺度的图像语义信息,进行跨模态语义关联建模,以促进文本图像在统一特征空间内的有效交互.提出一种动态门控交叉注意力机制,在方面引导下进行视觉特征提取.其次,结合图卷积神经网络深度共现词间的语义依赖关系,获取句法和语义增强的上下文表征.最后,在多模态特征融合阶段,通过多层注意力池化学习不同模态特征的相关性,并降低融合特征维度.在公开的情感分析数据集上,对提出的模型进行评估,实验结果表明,与一系列基线模型相比,本模型具有更佳的情感分类效果. 展开更多
关键词 多模态方面级情感分析 多尺度图像语义提取 统一特征空间 语义关联建模 文本图卷积 注意力池化
在线阅读 下载PDF
基于PKUSEG-Text-GCN的肿瘤疾病预测模型
5
作者 高志玲 赵新宇 《计算机工程与科学》 2025年第7期1303-1311,共9页
当前疾病预测模型仅关注病历文本的局部信息以及上下文信息,缺乏对全局信息的考虑,由此导致预测结果准确率不高。利用图神经网络关注全局信息的特点,提出将图卷积神经网络(GCN)用于中文电子病历的肿瘤疾病预测。首先,利用医学领域分词... 当前疾病预测模型仅关注病历文本的局部信息以及上下文信息,缺乏对全局信息的考虑,由此导致预测结果准确率不高。利用图神经网络关注全局信息的特点,提出将图卷积神经网络(GCN)用于中文电子病历的肿瘤疾病预测。首先,利用医学领域分词工具包PKUSEG对中文电子病历进行分词;其次,通过病历与词的共现关系和病历文本中词与词之间的关系,建立文本图;最后,基于该医学文本图利用图卷积神经网络(Text-GCN)对文本图的特征进行学习,将学习到的模型用于肿瘤疾病预测。实验结果显示,所提模型相比多个模型中的最优模型准确率提升了6%。同时,当数据较少的时候准确率并不会明显下降,表明该模型在电子病历较少的情况下仍具有很好的鲁棒性。 展开更多
关键词 文本图卷积神经网络 中文分词 肿瘤致病分析 肿瘤疾病预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部