期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向可溯源文本生成的科技文献伪反馈训练数据合成研究
1
作者 马永强 刘家伟 高影繁 《情报学报》 北大核心 2025年第7期830-845,共16页
在学术文本中插入恰当的引文标识是学术写作的基本规范,可以帮助读者验证文本内容的真实性。引文标识符可以用于实现内容溯源、保证内容可验证性。在学术场景中,现有大语言模型普遍缺乏内置的内容溯源机制,导致所生成学术文本的可验证... 在学术文本中插入恰当的引文标识是学术写作的基本规范,可以帮助读者验证文本内容的真实性。引文标识符可以用于实现内容溯源、保证内容可验证性。在学术场景中,现有大语言模型普遍缺乏内置的内容溯源机制,导致所生成学术文本的可验证性不足。当前,借助领域数据集来优化大模型是主流的研究思路。然而,在优化模型可溯源性方面,基于人类撰写的学术文本所构建的训练集存在内在一致性不足、引文标注行为差异性大等问题,基于大模型的数据合成方法在数据多样性方面也存在局限性。为此,本文提出了一种面向可溯源学术文本的引文标识符体系与评测方法,用于分析大模型所生成学术文本的可溯源性。然后,从训练数据的角度,针对可溯源的学术文本生成,本文提出了一种两阶段伪反馈训练数据合成方法,兼顾大模型标注文本和人类标注文本的特性,构建高质量、多样化的训练数据。研究结果表明,采用本文构建的合成数据训练的小模型,能够生成更具可溯源性的学术文本;通过第二阶段的伪反馈进一步优化数据分布和任务多样性,有助于增强模型的泛化能力。 展开更多
关键词 大语言模型 数据合成 学术多文档摘要 文本可溯源性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部