期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Developing a Support Vector Machine Based QSPR Model to Predict Gas-to-Benzene Solvation Enthalpy of Organic Compounds 被引量:1
1
作者 GOLMOHAMMADI Hassan DASHTBOZORGI Zahra KHOOSHECHIN Sajad 《物理化学学报》 SCIE CAS CSCD 北大核心 2017年第5期918-926,共9页
The purpose of this paper is to present a novel way to building quantitative structure-property relationship(QSPR) models for predicting the gas-to-benzene solvation enthalpy(ΔHSolv) of 158 organic compounds based on... The purpose of this paper is to present a novel way to building quantitative structure-property relationship(QSPR) models for predicting the gas-to-benzene solvation enthalpy(ΔHSolv) of 158 organic compounds based on molecular descriptors calculated from the structure alone. Different kinds of descriptors were calculated for each compounds using dragon package. The variable selection technique of enhanced replacement method(ERM) was employed to select optimal subset of descriptors. Our investigation reveals that the dependence of physico-chemical properties on solvation enthalpy is a nonlinear observable fact and that ERM method is unable to model the solvation enthalpy accurately. The standard error value of prediction set for support vector machine(SVM) is 1.681 kJ ? mol^(-1) while it is 4.624 kJ ? mol^(-1) for ERM. The results established that the calculated ΔHSolvvalues by SVM were in good agreement with the experimental ones, and the performances of the SVM models were superior to those obtained by ERM one. This indicates that SVM can be used as an alternative modeling tool for QSPR studies. 展开更多
关键词 数量的结构-财产关系 气体--苯媒合焓 描述符 提高了复位成本折旧法 支承矢量机器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部