Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation o...Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation of added resistance. Based on the potential flow assumption, the velocity potential is computed using Green's formula. The Kochin function is applied to compute added resistance using Maruo's far-field method, the body surface is described by a B-spline curve and potentials and normal derivation of potentials are also described by B-spline basis functions and B-spline derivations. A collocation approach is applied for numerical computation, and integral equations are then evaluated by applying Gauss–Legendre quadrature. Computations are performed for a spheroid and different hull forms; results are validated by a comparison with experimental results. All results obtained with the present method show good agreement with experimental results.展开更多
Due to the use of mechanical and electrical equipments in different buildings during construction phase, energy consumption produces large amounts of carbon emissions.Based on the energy use of China, we established a...Due to the use of mechanical and electrical equipments in different buildings during construction phase, energy consumption produces large amounts of carbon emissions.Based on the energy use of China, we established a formula that was applicable to carbon-emission calculation, and discussed carbon-emission characteristics of concrete structures and steel construction.Owing to the difference of electrical and mechanical equipment used in construction phase, the results show that under the same conditions, the carbon emission intensity of a concrete structure building is much higher than that of a steel building.At last, we also put forward some emission reduction measures based on the calculation data of different buildings.展开更多
文摘Making an exact computation of added resistance in sea waves is of high interest due to the economic effects relating to ship design and operation. In this paper, a B-spline based method is developed for computation of added resistance. Based on the potential flow assumption, the velocity potential is computed using Green's formula. The Kochin function is applied to compute added resistance using Maruo's far-field method, the body surface is described by a B-spline curve and potentials and normal derivation of potentials are also described by B-spline basis functions and B-spline derivations. A collocation approach is applied for numerical computation, and integral equations are then evaluated by applying Gauss–Legendre quadrature. Computations are performed for a spheroid and different hull forms; results are validated by a comparison with experimental results. All results obtained with the present method show good agreement with experimental results.
基金Funded by Regional Transportation Integration Technology of FAFU (No.Pytd 12006)Science and Technology project of Fujian Education Department (No.JB 11046)
文摘Due to the use of mechanical and electrical equipments in different buildings during construction phase, energy consumption produces large amounts of carbon emissions.Based on the energy use of China, we established a formula that was applicable to carbon-emission calculation, and discussed carbon-emission characteristics of concrete structures and steel construction.Owing to the difference of electrical and mechanical equipment used in construction phase, the results show that under the same conditions, the carbon emission intensity of a concrete structure building is much higher than that of a steel building.At last, we also put forward some emission reduction measures based on the calculation data of different buildings.