期刊文献+
共找到1,350篇文章
< 1 2 68 >
每页显示 20 50 100
数据-模型融合驱动的高倍率短时脉冲电池模型
1
作者 要宇辉 孙丙香 +4 位作者 张慧敏 马仕昌 赵鑫泽 鲁诗默 朱振威 《电池》 北大核心 2025年第2期232-237,共6页
高倍率短时脉冲工况下,电池的极化特性差异大、温度上升快、极化电压消退不彻底,导致常规等效电路模型仿真效果不佳。参数辨识和分段均方误差分析发现,高倍率脉冲工况下模型在极化消退部分仿真误差较大,导致下一脉冲极化电压初始值失准... 高倍率短时脉冲工况下,电池的极化特性差异大、温度上升快、极化电压消退不彻底,导致常规等效电路模型仿真效果不佳。参数辨识和分段均方误差分析发现,高倍率脉冲工况下模型在极化消退部分仿真误差较大,导致下一脉冲极化电压初始值失准。提出基于一阶等效电路模型和前馈神经网络的数据-模型融合驱动模型。相较于常规等效电路模型,该模型在20 C的短时脉冲工况下,能更精确地模拟电池的电压响应,均方根误差降低了61.29%。 展开更多
关键词 锂离子电池 高倍率短时脉冲工况 等效电路模型 前馈神经网络 数据-模型融合驱动模型
在线阅读 下载PDF
模型-数据融合驱动的频率稳定智能增强判别方法
2
作者 吕昊 陈锦辉 +4 位作者 杜友田 徐式蕴 李宗翰 傅太国屹 刘俊 《电网技术》 北大核心 2025年第8期3314-3323,共10页
经典低阶频率响应模型可快速计算各项频率指标,但由于高比例新能源系统扰动类型多样,运行方式复杂多变,难以准确获取系统参数和扰动功率大小,同时模型本身线性化会引起较大误差,导致频率预测值和实际值存在较大差异。为使频率响应模型... 经典低阶频率响应模型可快速计算各项频率指标,但由于高比例新能源系统扰动类型多样,运行方式复杂多变,难以准确获取系统参数和扰动功率大小,同时模型本身线性化会引起较大误差,导致频率预测值和实际值存在较大差异。为使频率响应模型适应实际应用场景中高精度的要求,该文提出了模型-数据融合驱动的频率稳定智能增强判别方法(model-data driven intelligent enhanced method for frequency stability discrimination,MD-IEFSD),利用扰动初期频率响应数据对模型关键参数进行辨识,建立结合卷积神经网络和注意力机制的CNN-Attention频率参数预测模型,构建了融合参数预测误差和频率响应曲线预测误差的损失函数,引入了参数的敏感性和学习速率的分析,实现了频率稳定性的准确判别。最后以中国电科院万节点测试系统为算例,验证所提方法的可行性和有效性。 展开更多
关键词 频率稳定 模型-数据融合驱动 参数辨识 卷积神经网络 注意力机制
在线阅读 下载PDF
钢结构疲劳的“模-数”融合驱动理论模型与性能确定方法——以腐蚀疲劳问题为例 被引量:1
3
作者 张清华 唐琨 +3 位作者 崔闯 马燕 袁晓鹏 李亚鹏 《土木工程学报》 北大核心 2025年第7期1-13,27,共14页
数据源和表征指标单一导致的信息维度不足,是制约钢结构疲劳性能研究的关键问题。文章结合钢结构数智化工程发展的迫切需求和数字技术的最新进展,提出钢结构疲劳的“模-数”(“模型试验-数字仿真”)融合驱动的理论模型与性能确定方法,... 数据源和表征指标单一导致的信息维度不足,是制约钢结构疲劳性能研究的关键问题。文章结合钢结构数智化工程发展的迫切需求和数字技术的最新进展,提出钢结构疲劳的“模-数”(“模型试验-数字仿真”)融合驱动的理论模型与性能确定方法,以严重威胁钢结构安全的腐蚀疲劳问题作为示例,研究并讨论理论模型和方法应用的具体问题。确定腐蚀疲劳表征指标,提出信息提取方法;基于腐蚀焊接接头点云形貌以及断裂力学裂纹扩展理论,构建了数据驱动与物理驱动融合模型,通过调整数据与物理驱动损失函数的权重配比,建立适用的物理信息神经网络(PINN)模型。设计并完成中性盐雾腐蚀试验和疲劳试验,以腐蚀形貌点云数据及裂纹扩展信息作为模型的训练和验证数据,通过腐蚀疲劳寿命PINN预测模型,实现模型试验与数值仿真多维、多源信息的有效融合。研究结果表明:所建立的理论模型能够融合试验数据与物理先验知识,显著提高疲劳寿命预测精度;多源疲劳信息融合能够显著增强模型在应对复杂腐蚀疲劳行为时的鲁棒性和泛化能力;所提出的“模型试验-数字仿真”融合驱动方法为解决钢结构疲劳问题提供了新途径和新范式。 展开更多
关键词 钢结构 疲劳 “模-数”融合驱动理论模型 信息融合 模型试验 数字仿真
在线阅读 下载PDF
基于数据-物理模型融合驱动的原始-对偶自监督学习最优潮流求解方法
4
作者 翁宗龙 李滨 +2 位作者 肖佳文 张佳乐 白晓清 《电力自动化设备》 北大核心 2025年第4期202-208,共7页
随着新型电力系统的构建以及清洁低碳能源体系的转变,高维强非线性、高不确定性、强耦合等特点使得现有最优潮流计算的复杂度急剧增加。基于数据-物理模型融合驱动,提出一种内嵌交流潮流方程的原始-对偶自监督学习的最优潮流求解方法。... 随着新型电力系统的构建以及清洁低碳能源体系的转变,高维强非线性、高不确定性、强耦合等特点使得现有最优潮流计算的复杂度急剧增加。基于数据-物理模型融合驱动,提出一种内嵌交流潮流方程的原始-对偶自监督学习的最优潮流求解方法。建立原始神经网络和对偶神经网络,并采用类增广拉格朗日的方法进行联合训练。原始神经网络仅预测所有节点的电压,在该训练网络中内嵌交流潮流方程,以计算发电机的有功和无功出力;对偶神经网络预测拉格朗日乘子估计值。仿真结果表明,所提方法不仅关注大量数据的底层特征,还优化解的质量,有助于更好地探索数据的结构和特性。同时,该方法无须预处理标签样本数据集,其计算精度和可信度优于数据驱动方法,其计算速度比传统物理模型驱动方法快数十倍。 展开更多
关键词 数据-物理融合驱动 类增广拉格朗日 原始-对偶自监督学习 最优潮流 内嵌交流潮流方程
在线阅读 下载PDF
融合知识驱动和数据驱动的混合决策模型构建:以室性心动过速病因诊断为例
5
作者 王敏 胡兆 +3 位作者 徐晓巍 郑思 李姣 姚焰 《协和医学杂志》 北大核心 2025年第2期454-461,共8页
目的构建一个融合知识驱动和数据驱动的混合决策模型,并将其应用于室性心动过速的病因诊断。方法检索2018—2023年心律失常疾病领域的临床实践指南、专家共识和医学文献作为知识源,并回顾性收集2013—2023年中国医学科学院阜外医院室性... 目的构建一个融合知识驱动和数据驱动的混合决策模型,并将其应用于室性心动过速的病因诊断。方法检索2018—2023年心律失常疾病领域的临床实践指南、专家共识和医学文献作为知识源,并回顾性收集2013—2023年中国医学科学院阜外医院室性心动过速(ventricular tachycardia,VT)患者的电子病历信息作为数据集。采用基于知识规则的方法构建临床路径作为知识驱动模型;基于真实世界数据构建VT病因诊断三分类机器学习模型,并选取其中的最佳模型作为数据驱动模型代表;以临床路径为基本框架,将机器学习模型以自定义运算符的形式嵌入临床路径的决策节点中,作为混合模型。评价上述3种模型的精确率、召回率和F1分数。结果共纳入3部临床实践指南作为知识驱动模型的知识源;收集了1305条患者数据作为数据集,构建了5种机器学习模型,其中XGBoost模型最佳。混合模型采用知识驱动的决策思维,分别将XGBoost模型嵌入2层分类的决策节点中。3种模型的精确率、召回率和F1分数如下:知识驱动模型为80.4%、79.1%和79.7%;数据驱动模型分别为88.4%、88.5%和88.4%;混合模型分别为90.4%、90.2%和90.3%。结论融合知识与数据驱动的混合模型展现出更高的准确性,且混合模型的所有决策结果均基于循证证据,这更接近临床医生的实际诊断思维。未来需更严格地验证混合模型广泛应用于医学领域的可行性。 展开更多
关键词 室性心动过速 知识驱动 数据驱动 混合模型 决策支持
在线阅读 下载PDF
架空输电线路微气象预测的气象站时空融合数据驱动轻梯度提升机模型
6
作者 郝艳捧 李鑫贺 +1 位作者 黄磊 王黎伟 《广东电力》 北大核心 2025年第3期46-54,共9页
极端的微气象容易造成架空输电线路覆冰荷载过大,严重威胁电网安全运行。架空输电线路微气象预测为覆冰预测提供气象预测数据,提高输电线路覆冰风险预警能力,保障“西电东送”主通道和大型清洁能源基地电力外送通道覆冰期安全运行。针... 极端的微气象容易造成架空输电线路覆冰荷载过大,严重威胁电网安全运行。架空输电线路微气象预测为覆冰预测提供气象预测数据,提高输电线路覆冰风险预警能力,保障“西电东送”主通道和大型清洁能源基地电力外送通道覆冰期安全运行。针对架空输电线路微气象差异性强、波动大等预测难问题,研究利用气象站天气预报预测架空输电线路终端微气象,提出微气象终端与气象站距离最近、时刻最近的时空数据融合方法,建立基于4474条数据的时空数据驱动的架空输电线路终端微气象预测轻梯度提升机(light gradient boosting machine,LightGBM)模型。以典型终端为例研究模型某时刻、前1 h、前2 h、前3 h等4种预测样本融合方式的影响,结果表明前1 h预测样本融合方式的微气象预测效果最好,测试集1295条数据的微气象温度、湿度、风速预测平均绝对误差分别为0.87℃、3.178%和0.986 m·s^(-1)。基于前1 h预测样本时空融合方式的LightGBM模型,预测163个终端的微气象,与监测值对比表明,温度、湿度、风速预测误差平均值分别为1~3℃、6%~13%、0.5~1.5 m·s^(-1),为架空输电线路覆冰预测提供准确微气象预测数据。 展开更多
关键词 微气象预测 输电线路 气象站 LightGBM模型 数据融合
在线阅读 下载PDF
数据-模型混合驱动的数据中心综合能源系统优化调度综述 被引量:1
7
作者 范宏 徐涛 贾庆山 《南方电网技术》 北大核心 2025年第3期174-187,共14页
为了实现数据中心的节能和减排,将数据中心融于综合能源系统进行协同优化是实现这一目标的有效途径。首先阐述了数据-模型混合驱动策略的原理,并分别对模型驱动和数据驱动在综合能源系统中的应用情况进行综述。然后,详细介绍了数据中心... 为了实现数据中心的节能和减排,将数据中心融于综合能源系统进行协同优化是实现这一目标的有效途径。首先阐述了数据-模型混合驱动策略的原理,并分别对模型驱动和数据驱动在综合能源系统中的应用情况进行综述。然后,详细介绍了数据中心的负荷预测模型以及数据-模型混合驱动在数据中心综合能源系统中的应用现状,在此基础上,提出了一种基于数据-模型混合驱动的数据中心综合能源系统调度策略框架。最后,对目前研究存在的问题进行了讨论,并对未来的发展方向做出展望,为该领域的研究人员提供参考。 展开更多
关键词 数据中心 综合能源系统 数据-模型混合驱动 优化调度
在线阅读 下载PDF
基于ν-SVR的船舶动力学机理模型-数据混合驱动建模方法
8
作者 夏桂华 朱文旭 +3 位作者 姜立超 朱可遇 尚晓兵 张智 《哈尔滨工程大学学报》 北大核心 2025年第9期1809-1815,共7页
高精度的船舶动力学模型对于海上交通和海洋贸易具有十分重要的意义,然而,现存的船舶动力学机理模型的性能受限于模型结构和水动力参数,船舶动力学数据驱动模型缺乏可解释性。为解决这个问题,提出一种基于nu-支持向量回归(ν-SVR)的船... 高精度的船舶动力学模型对于海上交通和海洋贸易具有十分重要的意义,然而,现存的船舶动力学机理模型的性能受限于模型结构和水动力参数,船舶动力学数据驱动模型缺乏可解释性。为解决这个问题,提出一种基于nu-支持向量回归(ν-SVR)的船舶动力学机理模型-数据混合驱动建模方法。一种Abkowitz模型被用于构成混合模型的机理部分,一种ν-SVR被采用拟合机理模型和真实船之间的残差数据,遗传算法也被混合模型的超参数寻优。所提出方法的性能是基于一艘仿真的Mariner船舶进行验证的。通过多组操纵运动测试案例发现ν-SVR可以有效补偿机理模型的预测残差,同时,所提出的机理模型-数据混合驱动建模方法具有较好的预测精度和泛化能力。 展开更多
关键词 船舶动力学 数据驱动模型 Abkowitz模型 ν-SVR 船舶操纵运动
在线阅读 下载PDF
机理模型与数据驱动融合的液压泵变载荷工况故障诊断方法
9
作者 周靖南 唐宏宾 +1 位作者 任广安 梁翊骁 《电子测量与仪器学报》 北大核心 2025年第4期247-257,共11页
由于工作环境恶劣、工况复杂多变,液压泵常处于变载荷的工作状态,给其状态监测及故障诊断带来了严峻挑战。然而现有的基于模型的方法和数据驱动方法在故障诊断上均有一定的局限性,故提出了一种机理模型与数据驱动融合的故障诊断方法。... 由于工作环境恶劣、工况复杂多变,液压泵常处于变载荷的工作状态,给其状态监测及故障诊断带来了严峻挑战。然而现有的基于模型的方法和数据驱动方法在故障诊断上均有一定的局限性,故提出了一种机理模型与数据驱动融合的故障诊断方法。首先构建液压泵虚拟样机模型并模拟不同负载下的故障,获取仿真压力信号;然后对液压泵进行故障实验,采集与仿真信号相对应的负载和故障状态的实验压力信号;随后,根据提出的方差权值融合方法计算仿真和实验数据方差,将通过方差计算出的最优权值对仿真和实验数据进行融合;最后将获得的融合数据输入首层宽卷积深度神经网络(WDCNN)进行单一负载和混合负载两种情况下的故障诊断。实验结果表明,该方法能明显提高诊断的准确率,其中在混合负载情况下该方法比单一的模型驱动和数据驱动诊断方法准确率分别提高2.42%和12.92%,验证了该方法的有效性与优越性。 展开更多
关键词 液压泵 故障诊断 机理模型 数据驱动
在线阅读 下载PDF
基于混合物理数据驱动的油藏地质体CO_(2)利用与封存代理模型研究 被引量:2
10
作者 芮振华 邓海洋 胡婷 《钻采工艺》 北大核心 2025年第1期190-198,共9页
在全球能源转型与能源需求持续增长的背景下,碳捕获、利用和封存(CCUS)已成为极具前景的研究方向。CO_(2)利用与封存协同优化通常依赖大量的组分正演模拟,但三维高分辨率模型计算成本高昂,限制其广泛应用。基于混合物理数据驱动的GPSNe... 在全球能源转型与能源需求持续增长的背景下,碳捕获、利用和封存(CCUS)已成为极具前景的研究方向。CO_(2)利用与封存协同优化通常依赖大量的组分正演模拟,但三维高分辨率模型计算成本高昂,限制其广泛应用。基于混合物理数据驱动的GPSNet模型以其高效的计算效率已成为一种理想的代理模型,然而现有的GPSNet模型难以准确捕获复杂的相行为和组分间的相互作用,为此,文章提出了一种新型专用于组分模拟的comp-GPSNet模型,通过标准失配最小化方法和基于伴随的梯度优化算法对comp-GPSNet模型进行训练,以拟合从高分辨率模拟中获取的井响应数据。将训练后的模型应用到PUNQ-S3油藏中,全面评估复杂条件下comp-GPSNet模型的预测能力,结果表明,comp-GPSNet模型在单井和区块范围内均表现出良好的预测精度,CO_(2)利用率和封存率的预测误差分别为0.16%和3.13%。该模型为CO_(2)利用与封存协同优化提供了一个稳健的代理框架,以推动油田数字化与智能化发展。 展开更多
关键词 CCUS comp-GPSNet 混合物理数据驱动 代理模型 组分模拟
在线阅读 下载PDF
基于自适应时间窗的数据-模型融合驱动暂态频率预测 被引量:5
11
作者 邓贤哲 姚伟 +4 位作者 黄伟 翟苏巍 郑超 李文云 文劲宇 《电网技术》 EI CSCD 北大核心 2024年第4期1551-1562,I0049,I0050,共14页
新能源大规模并网使得新型电力系统的暂态频率响应特征更加复杂,现有频率在线预测方法难以兼顾准确性和及时性。基于此,提出基于自适应时间窗的数据-模型融合驱动暂态频率预测方法。首先,基于长短期记忆网络,离线训练多个具有不同长度... 新能源大规模并网使得新型电力系统的暂态频率响应特征更加复杂,现有频率在线预测方法难以兼顾准确性和及时性。基于此,提出基于自适应时间窗的数据-模型融合驱动暂态频率预测方法。首先,基于长短期记忆网络,离线训练多个具有不同长度时序数据输入的频率曲线循环预测模型;其次,利用参数辨识方法离线建立各发电集群的通用等值频率响应模型,在此基础上构建系统有功-频率物理机理快速分析模型;最后,串行融合前述频率曲线循环预测模型与有功-频率物理机理快速分析模型,并提出“可信度量化评估指标”,实时分析在线预测过程中不同评估时刻下预测结果的精度,自适应调整输入时序数据长度,直至预测结果满足要求并输出。含风电的IEEE39节点系统的仿真结果表明,所提方法在不同风电渗透率或不同扰动下均能快速、准确地预测暂态频率响应曲线,相较于其他在线预测方法具有更优的评估性能。 展开更多
关键词 数据-模型融合驱动 自适应时间窗预测 暂态频率预测 广域量测技术
在线阅读 下载PDF
基于状态空间离散的非线性动力系统全局分析方法进展:从模型驱动到数据驱动
12
作者 李自刚 洪灵 江俊 《力学进展》 北大核心 2025年第3期455-496,共42页
非线性动力系统的一切响应行为均受制于其内在的全局结构,诸如多稳吸引子及其影响域的形貌和空间分布,不稳定不变集和不变流形等.因而,在指定状态空间内开展全局分析,不仅可以获得认识和预测系统响应的全部信息,还能深刻揭示诱发系统复... 非线性动力系统的一切响应行为均受制于其内在的全局结构,诸如多稳吸引子及其影响域的形貌和空间分布,不稳定不变集和不变流形等.因而,在指定状态空间内开展全局分析,不仅可以获得认识和预测系统响应的全部信息,还能深刻揭示诱发系统复杂分岔、激变或边界蜕变等众多动力学现象的内在机制.目前,数值方法仍是非线性动力系统全局分析的最有效手段.相较于点尺度的数值积分方法或点映射法,基于状态空间离散思想的方法(如:胞映射方法等),其采用子集覆盖来逼近系统的不变集,一方面可以高效刻画系统的全局结构形貌,另一方面可以实现对相邻轨道动态特征的集合表征.胞映射方法经历40余年的发展,其功能不断增强,计算效率和精度已显著提升,应用场景也逐渐拓宽.本文第2节从当前的视角对状态空间离散方式进行简要归类,以便于读者更好地了解在全局分析实施过程中该框架体系的本质及优势.第3节着重介绍近些年提出的一系列状态空间离散方法,展示在非线性系统全局结构的高效刻画和内在特征的数据表征两方面已取得的最新进展,突出全局分析从模型驱动向数据驱动的思维模式转变.第4节总结意义和价值,并就如何在状态空间离散框架下进一步泛化全局分析的概念,以及应对未来发展和应用需求可能面临的问题和可以拓展的方向提出见解. 展开更多
关键词 状态空间离散 全局分析 胞映射方法 模型驱动 数据驱动
在线阅读 下载PDF
数据驱动的高速公路自学习元胞传输模型
13
作者 林培群 黄超铄 +2 位作者 周楚昊 庞崇浩 邓锴宇 《交通运输系统工程与信息》 北大核心 2025年第5期103-113,123,共12页
高效的交通仿真模型能够为交通管理部门提供实时和短期的路段流量变化情况,为主动交通管理与路网优化疏导提供科学依据。然而,在复杂交通场景下,模型参数易受环境影响发生变化,导致仿真精度下降。本文提出一种数据驱动的自学习元胞传输... 高效的交通仿真模型能够为交通管理部门提供实时和短期的路段流量变化情况,为主动交通管理与路网优化疏导提供科学依据。然而,在复杂交通场景下,模型参数易受环境影响发生变化,导致仿真精度下降。本文提出一种数据驱动的自学习元胞传输模型(Self-Learning Cell Transmission Model,SLCTM)。模型采用数据驱动方式,通过对元胞输入特征、内部状态与输出流量的自适应拟合,自主学习元胞传输模型中需要人工标定的参数,有效规避复杂参数标定过程,提升仿真的准确性与运行效率。基于广东省南二环高速公路和佛开高速公路实测数据的验证结果表明:与随机森林模型相比,SL-CTM在两条道路的流量仿真加权平均绝对误差百分比(Weighted Mean Absolute Percentage Error,WMAPE)分别下降17.55%和15.83%;与长短期记忆网络相比,SL-CTM在两条道路的流量仿真WMAPE分别下降12.37%和10.50%;说明SL-CTM在使用更少初始特征的同时具备更强的流量突变响应能力;与SUMO(Simulation of Urban Mobility)仿真软件相比,SL-CTM的WMAPE下降55.90%,仿真速度提升72.57%,在高流量场景中表现出更优的仿真性能。研究表明,SL-CTM能够显著提升交通仿真的精度与计算效率,为复杂交通环境下的动态交通管理提供更为可靠的技术支持。 展开更多
关键词 智能交通 交通流预测 元胞传输模型 高速公路 数据驱动建模
在线阅读 下载PDF
基于数据-物理混合模型的菇房空调节能控制方法 被引量:1
14
作者 孔祥书 郑文刚 +3 位作者 张馨 王明飞 单飞飞 赵倩 《农业工程学报》 北大核心 2025年第4期309-317,共9页
针对模型预测控制在菇房节能控制中存在纯数据驱动温度预测模型可解释性差、优化求解速度慢等问题,该研究提出了一种基于数据-物理混合模型的菇房空调节能控制方法。首先,使用门控循环单元神经网络(gated recurrent unit neural network... 针对模型预测控制在菇房节能控制中存在纯数据驱动温度预测模型可解释性差、优化求解速度慢等问题,该研究提出了一种基于数据-物理混合模型的菇房空调节能控制方法。首先,使用门控循环单元神经网络(gated recurrent unit neural network, GRU)与注意力机制(attention)作为预测模型,将菇房内部热平衡方程纳入损失函数中,实现基于数据-物理混合模型的菇房温度预测方法。然后,基于模型输出与参考轨迹的偏离程度和设备控制量建立目标函数。最后,利用改进型Adam算法快速地求解出空调在控制时域内的最优控制序列,实现菇房空调能耗最优控制。试验结果表明:与纯数据驱动的GRU模型相比,本文所提出的菇房温度预测模型,预测精度提高18%,均方根误差可控制在0.10℃内。与自适应矩估计(adaptive moment estimation,Adam)优化算法相比,改进型Adam算法适应度值降低6%,与带精英策略的快速非支配排序遗传算法相比(non-dominated sorting genetic algorithmⅡ, NSGA-Ⅱ)运算时长减少81%。与传统的阈值控制方法相比,本文所提出的模型预测控制方法跟踪精度提高63%,控制精度的均方根误差平均降低了73%,空调能耗平均降低了12%。该研究为菇房空调的节能控制提供了有效的控制方法。 展开更多
关键词 节能 模型预测控制 深度学习 数据-物理混合驱动模型 菇房
在线阅读 下载PDF
数据驱动的金属疲劳寿命模型研究进展 被引量:4
15
作者 甘磊 吴昊 仲政 《力学进展》 北大核心 2025年第1期30-79,共50页
金属疲劳寿命模型是开展工程结构完整性和可靠性评估的基础.传统的知识驱动模型关注疲劳机理和数理逻辑,一般具有明确的物理意义,并且可高度概括疲劳失效过程.然而,随着对结构安全性要求的日益提高以及新兴工程材料的不断涌现,传统模型... 金属疲劳寿命模型是开展工程结构完整性和可靠性评估的基础.传统的知识驱动模型关注疲劳机理和数理逻辑,一般具有明确的物理意义,并且可高度概括疲劳失效过程.然而,随着对结构安全性要求的日益提高以及新兴工程材料的不断涌现,传统模型在预测能力、应用场景、工程适用性等方面都逐渐显现出局限性.近年来,由人工智能赋能的数据驱动模型在金属疲劳寿命研究领域受到了广泛关注,相关研究成果正逐步应用于解决包括单轴疲劳、多轴疲劳、变幅疲劳在内的各类经典疲劳问题.数据驱动模型能够在最小化人因误差的情况下,从多变量作用中解析出对疲劳寿命的最优显\隐式表达,可揭示传统方法难以发现的失效规律,已然成为领域内新的研究热点.本文综述了当前数据驱动模型在金属疲劳寿命预测方面的研究进展,首先总结了纯数据驱动模型的一般应用流程及其应用现状,其次归纳了各类知识-数据混合驱动模型的实现方式及应用优势,最后对未来潜在研究方向及挑战进行了探讨与展望. 展开更多
关键词 疲劳寿命预测 金属 数据驱动模型 知识-数据混合驱动模型
在线阅读 下载PDF
数据驱动的多时间尺度高炉煤气利用率模型预测控制 被引量:1
16
作者 安剑奇 赵国宇 +3 位作者 何勇 李炜俊 郭云鹏 吴敏 《控制理论与应用》 北大核心 2025年第1期189-201,共13页
煤气利用率(GUR)是衡量高炉能耗和稳顺运行的重要指标,受布料和送风操作在不同时间尺度下影响.现有对煤气利用率的建模、预测和控制仅在单一时间尺度上进行,忽略了多时间尺度特性,影响预测和控制的准确性.因此,提出一种数据驱动的多时... 煤气利用率(GUR)是衡量高炉能耗和稳顺运行的重要指标,受布料和送风操作在不同时间尺度下影响.现有对煤气利用率的建模、预测和控制仅在单一时间尺度上进行,忽略了多时间尺度特性,影响预测和控制的准确性.因此,提出一种数据驱动的多时间尺度高炉煤气利用率模型预测控制方法(MTSGURMPC).首先,根据经验模态分解和相关性分析得到布料和送风对煤气利用率影响的不同尺度;然后,建立布料长时间尺度和送风短时间尺度模型,提出了多时间尺度模型预测控制结构用于快速准确寻找高炉最优操作策略,该结构将煤气利用率划分为不同尺度进行模型预测控制,兼顾了高炉多时间尺度和模型预测控制动态优化特性,不断反馈优化趋近最优解;最后,基于某钢铁厂高炉工业数据进行应用实验,结果表明该方法能够实现煤气利用率准确预测和控制,并有效提高控制精度. 展开更多
关键词 高炉煤气利用率 数据驱动建模 多时间尺度系统 模型预测控制 经验模态分解
在线阅读 下载PDF
基于数据-模型混合驱动的电力系统机电暂态快速仿真方法 被引量:5
17
作者 王鑫 杨珂 +3 位作者 黄文琦 马云飞 耿光超 江全元 《中国电机工程学报》 EI CSCD 北大核心 2024年第8期2955-2964,I0002,共11页
数据驱动建模方法改变了发电机传统的建模范式,导致传统的机电暂态时域仿真方法无法直接应用于新范式下的电力系统。为此,该文提出一种基于数据-模型混合驱动的机电暂态时域仿真(data and physics driven time domain simulation,DPD-T... 数据驱动建模方法改变了发电机传统的建模范式,导致传统的机电暂态时域仿真方法无法直接应用于新范式下的电力系统。为此,该文提出一种基于数据-模型混合驱动的机电暂态时域仿真(data and physics driven time domain simulation,DPD-TDS)算法。算法中发电机状态变量与节点注入电流通过数据驱动模型推理计算,并通过网络方程完成节点电压计算,两者交替求解完成仿真。算法提出一种混合驱动范式下的网络代数方程组预处理方法,用以改善仿真的收敛性;算法设计一种中央处理器单元-神经网络处理器单元(central processing unit-neural network processing unit,CPU-NPU)异构计算框架以加速仿真,CPU进行机理模型的微分代数方程求解;NPU作协处理器完成数据驱动模型的前向推理。最后在IEEE-39和Polish-2383系统中将部分或全部发电机替换为数据驱动模型进行验证,仿真结果表明,所提出的仿真算法收敛性好,计算速度快,结果准确。 展开更多
关键词 机电暂态 时域仿真 数据-模型混合驱动 收敛性 CPU-NPU异构运算
在线阅读 下载PDF
多源数据频率域加权融合的深海高精度海底地形模型构建——以格陵兰岛南部海域为例
18
作者 卜宪海 谭新月 +3 位作者 张建兴 樊妙 闫循鹏 阳凡林 《海洋学报》 北大核心 2025年第8期101-115,共15页
融合卫星重力反演、船载声呐测深等多源数据是构建大范围深海高精度地形模型的核心技术途径。然而,当前方法通常难以兼顾局部地形细节和全局整体趋势,为此本文提出了一种基于多源数据频率域加权融合的深海高精度海底地形模型构建方法。... 融合卫星重力反演、船载声呐测深等多源数据是构建大范围深海高精度地形模型的核心技术途径。然而,当前方法通常难以兼顾局部地形细节和全局整体趋势,为此本文提出了一种基于多源数据频率域加权融合的深海高精度海底地形模型构建方法。首先,对多源数据进行数据格式转换、数据清洗与基准统一等预处理;然后,分别对测区对应的6个全球地形模型进行分频处理与加权融合,以局部船测地形与融合后模型的水深偏差为约束条件,迭代优化融合权重并得到初始融合结果;最后,联合局部船测地形与初始融合结果进行局部地形细节构建,从而实现大范围测区高精度地形模型重构。以格陵兰岛南部局部区域深海地形重构为例,结果表明:相比最邻近插值、反距离加权、自然邻近插值、克里金插值以及移去−恢复法等经典方法,本文方法构建的海底地形模型的均方根误差分别降低了17.15%、16.50%、16.63%、16.67%、9.99%,与IBCAO5.0模型之间的决定系数R2分别提高了约8.82%、8.27%、8.27%、8.41%、16.09%,地形整体趋势与局部细节信息均得到有效保证。 展开更多
关键词 深海地形模型 多源数据融合 数字水深模型 频率域 加权融合
在线阅读 下载PDF
机理模型与数据驱动模型交互的爆炸后果快速预测
19
作者 周沈楠 王仲琦 李其中 《安全与环境学报》 北大核心 2025年第1期85-94,共10页
化工园区内一旦发生爆炸,极易引发多米诺骨牌效应,导致群死群伤事故。及时、准确地预测潜在爆炸可能导致的后果影响,能够为应急响应提供决策支持。然而现有的爆炸后果建模方法无法兼顾预测精度和效率,针对这一问题,提出了机理模型与数... 化工园区内一旦发生爆炸,极易引发多米诺骨牌效应,导致群死群伤事故。及时、准确地预测潜在爆炸可能导致的后果影响,能够为应急响应提供决策支持。然而现有的爆炸后果建模方法无法兼顾预测精度和效率,针对这一问题,提出了机理模型与数据驱动模型交互的数模融合法,用以实现对特定园区潜在爆炸后果的快速预测。该方法将机器学习引入爆炸后果建模中,通过结合试验和数值模拟方法,来生成高质量的训练数据;在模型构建中,设计了分区建模和递进式学习策略;最后,通过将数据驱动模型的预测数据与现有爆炸毁伤判定准则相结合,对潜在爆炸事件后果进行快速预测。以园区蒸气云爆炸为例,建立了基于改良麻雀搜索算法优化广义回归神经网络(Improved Generalized Regression Neural Network,IGRNN)的爆炸冲击波超压峰值预测模型。测试结果表明,模型在不同复杂程度园区场景下均表现出了良好的外推能力,且在普通CPU上预测爆炸冲击波场的耗时少于8 s。最后,结合实例分析,验证了所提方法的可行性。 展开更多
关键词 安全工程 爆炸后果预测 数值模拟 数据驱动模型 应急响应
在线阅读 下载PDF
电网优化调度的模型-数据-知识融合方法研究评述及展望 被引量:2
20
作者 王珂 万祥宽 +3 位作者 王继业 李亚平 徐云贵 ASAD WAQAR 《中国电机工程学报》 EI CSCD 北大核心 2024年第S01期131-145,共15页
随着新型电力系统时变不确定因素日益增多和非线性更为增强,电网调度决策的复杂度剧增,充分利用物理模型、数据驱动和调度员知识经验的互补特性,有望实现电网优化调度决策效率和场景适应性的提升。首先,从不确定性调度、数据驱动和知识... 随着新型电力系统时变不确定因素日益增多和非线性更为增强,电网调度决策的复杂度剧增,充分利用物理模型、数据驱动和调度员知识经验的互补特性,有望实现电网优化调度决策效率和场景适应性的提升。首先,从不确定性调度、数据驱动和知识驱动3方面分别梳理了电网优化调度相关新发展;其次,分析了模型-数据-知识融合的内涵,将3者融合架构分为主从驱动模式和对等驱动模式,分别评述了国内外学者的相关研究工作;最后,针对模型-数据-知识融合在电网优化调度中的应用现状分析了存在问题,并从模型-数据-知识融合效果的量化评价、调度可信知识的主动筛选和演绎、多模式融合的电网调度可靠智能决策和自主趋优演化4个方面对未来研究方向进行了展望。 展开更多
关键词 模型驱动 数据驱动 知识经验 融合方式 电力优化调度
在线阅读 下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部