期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于即时学习的改进条件高斯回归软测量
被引量:
2
1
作者
黎宏陶
王振雷
王昕
《化工学报》
EI
CSCD
北大核心
2024年第6期2299-2312,共14页
基于数据驱动的在线软测量是当前工业智能化感知的重要研究方向。在算法实际部署中,过程模态切换以及数据漂移都会导致软测量性能下降,传统自适应方法又存在模型单一、模态遗忘等不足。针对上述问题提出一种基于即时学习的样本时空加权...
基于数据驱动的在线软测量是当前工业智能化感知的重要研究方向。在算法实际部署中,过程模态切换以及数据漂移都会导致软测量性能下降,传统自适应方法又存在模型单一、模态遗忘等不足。针对上述问题提出一种基于即时学习的样本时空加权条件高斯回归(STWCGR)软测量算法。该方法用概率密度估计和条件概率计算实现软测量建模和预测:首先根据即时学习思想通过样本时空混合加权方法筛选局部建模数据,然后结合高斯混合回归思想累积局部单高斯概率密度模型对数据分布进行拟合,最后引入预测动量更新和模态更新策略提高预测稳定性并赋予模型对新工况的学习适应能力。通过仿真实验验证了所提方法在预测精度、稳定性以及新模态适应能力上的有效性。
展开更多
关键词
智能感知
数据驱动软测量
预测
即时学习
高斯混合回归
在线阅读
下载PDF
职称材料
题名
基于即时学习的改进条件高斯回归软测量
被引量:
2
1
作者
黎宏陶
王振雷
王昕
机构
华东理工大学能源化工过程智能制造教育部重点实验室
上海交通大学电工与电子技术中心
出处
《化工学报》
EI
CSCD
北大核心
2024年第6期2299-2312,共14页
基金
国家自然科学基金重大项目(62394345)
国家自然科学基金面上项目(22178103,62373154)
+1 种基金
国家自然科学基金青年科学基金项目(62203173)
中央高校基本科研业务费专项(222202417006)。
文摘
基于数据驱动的在线软测量是当前工业智能化感知的重要研究方向。在算法实际部署中,过程模态切换以及数据漂移都会导致软测量性能下降,传统自适应方法又存在模型单一、模态遗忘等不足。针对上述问题提出一种基于即时学习的样本时空加权条件高斯回归(STWCGR)软测量算法。该方法用概率密度估计和条件概率计算实现软测量建模和预测:首先根据即时学习思想通过样本时空混合加权方法筛选局部建模数据,然后结合高斯混合回归思想累积局部单高斯概率密度模型对数据分布进行拟合,最后引入预测动量更新和模态更新策略提高预测稳定性并赋予模型对新工况的学习适应能力。通过仿真实验验证了所提方法在预测精度、稳定性以及新模态适应能力上的有效性。
关键词
智能感知
数据驱动软测量
预测
即时学习
高斯混合回归
Keywords
AI perception
data-driven soft sensor
prediction
just-in-time learning
Gaussian mixture regression
分类号
TP274 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于即时学习的改进条件高斯回归软测量
黎宏陶
王振雷
王昕
《化工学报》
EI
CSCD
北大核心
2024
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部