期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
参数化混合口令猜测方法 被引量:1
1
作者 韩伟力 张俊杰 +4 位作者 徐铭 王传旺 张浩东 何震瀛 陈虎 《计算机研究与发展》 EI CSCD 北大核心 2022年第12期2708-2722,共15页
基于文本口令的认证方法仍是当前用户身份认证的主流方式.为更好地研究口令安全性,研究人员提出了多种数据驱动的口令猜测方法,如概率上下文无关文法(probabilistic context-free grammars,PCFG)和马尔可夫(Markov)方法等.这些方法在猜... 基于文本口令的认证方法仍是当前用户身份认证的主流方式.为更好地研究口令安全性,研究人员提出了多种数据驱动的口令猜测方法,如概率上下文无关文法(probabilistic context-free grammars,PCFG)和马尔可夫(Markov)方法等.这些方法在猜测口令时有其独特的猜测优势,即能够以更小的猜测数猜中特定类型的口令.为充分利用这些优势以实现更优的猜测效率,提出了一个通用的参数化混合猜测框架.该框架由模型剪枝方法和理论证明最优的猜测数分配策略构成,能够混合不同数据驱动方法的猜测优势以生成更高效的猜测集.为了验证框架的通用性和最优性,通过分析并混合现有数据驱动猜测方法的不同优势,基于该框架设计了多个混合多元模型的参数化混合猜测方法(统称为hyPassGu)用于猜测实践.并且,还利用从真实网站泄露的4个大规模口令数据集(总共超过1.5亿条口令)对这些混合猜测方法进行了评估实验.实验结果表明,由不同方法组合构建的hyPassGu均表现出超越单一方法的猜测效率,且在10^(10)猜测数下超越了单一方法最优效率的1.52%~35.49%.此外,不同猜测数下的对比实验结果表明,提出的最优分配策略的猜测表现稳定,优于平均分配策略和随机分配策略,并在分布离散程度最大的口令数据集上有16.87%的相对提升,同时更多元的混合方法整体上也表现出更好的猜测效率. 展开更多
关键词 口令安全 数据驱动猜测 概率上下文无关文法 马尔可夫模型 混合模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部