短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精...短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。展开更多
时间序列数据广泛来源于社会各个领域,从气象学到金融学再到医学,准确的长期预测是时间序列数据分析、处理与研究中的一个关键问题。针对时间序列数据中存在的不同尺度相关性的挖掘与利用,提出一种基于神经网络的多尺度信息融合时间序...时间序列数据广泛来源于社会各个领域,从气象学到金融学再到医学,准确的长期预测是时间序列数据分析、处理与研究中的一个关键问题。针对时间序列数据中存在的不同尺度相关性的挖掘与利用,提出一种基于神经网络的多尺度信息融合时间序列长期预测模型ScaleNN,旨在更好地处理时间序列数据中的多尺度问题,从而实现更准确的长期预测。首先,结合全连接神经网络和卷积神经网络,有效提取全局信息与局部信息,并将2种信息聚合后进行预测;其次,通过在全局信息表征模块中引入压缩机制,以更轻量化的结构接受更长的序列输入,增大模型的感知范围并提高模型效能。大量实验结果表明,ScaleNN在多个真实世界数据集上的性能优于当前该领域的优秀模型PatchTST(Patch Time Series Transformer),在运行时间降低35%的同时仅需19%的参数量。可见,ScaleNN可广泛应用于不同领域的时间序列预测问题,为交通流量预测、天气预报等领域提供预测的基础。展开更多
针对滚动轴承全寿命周期监测数据不足导致剩余寿命预测精度不高的问题,提出一种基于时间序列数据扩增和双向长短时记忆(bidirectional long-short term memory, BLSTM)网络的剩余寿命预测方法。首先,采集训练用滚动轴承全寿命周期振动...针对滚动轴承全寿命周期监测数据不足导致剩余寿命预测精度不高的问题,提出一种基于时间序列数据扩增和双向长短时记忆(bidirectional long-short term memory, BLSTM)网络的剩余寿命预测方法。首先,采集训练用滚动轴承全寿命周期振动加速度和测试轴承振动加速度数据。其次,对采集得到的原始数据预处理后提取健康因子,将训练用数据和测试数据分别构成参考数据集和目标数据集。然后,以参考数据集为基础,利用动态时间规整算法扩增目标数据集数据。最后,使用数据扩增后的测试数据训练BLSTM网络,利用训练好的BLSTM网络预测滚动轴承性能退化趋势和剩余寿命。实验结果表明,基于动态时间规整算法的数据扩增模型能够根据已有全寿命周期数据,扩增性能退化过程相似的滚动轴承运行数据,利用扩增数据训练BLSTM网络,能够有效提高性能退化趋势预测能力,进而提高剩余寿命预测精度。展开更多
研究建立了基于时间序列分解的神经网络模型,能对降雨时间序列挖掘并预测。(1)以桓台县1979-2018年的480组月降雨数据为例,将降雨时间序列分解为趋势项、周期项、突变项与随机项。(2)采用累积距平法、Mann-Kendall趋势分析法、Hurst指...研究建立了基于时间序列分解的神经网络模型,能对降雨时间序列挖掘并预测。(1)以桓台县1979-2018年的480组月降雨数据为例,将降雨时间序列分解为趋势项、周期项、突变项与随机项。(2)采用累积距平法、Mann-Kendall趋势分析法、Hurst指数法、特征点法方法进行趋势性分析;小波分析法进行周期性分析;Mann-Kendall突变检验法和Pettitt法进行突变性分析;采用自相关法和单位根法对随机项进行检验。(3)以1979-2014年的432组月降雨时间序列随机项为率定数据,2015-2016年数据为验证数据,分别建立NAR(Nonlinear Auto Regression)与NARX(Nonlinear Auto Regression with External Input)神经网络随机项预测模型,对2017-2018年月降雨数据进行预测,并与直接预测结果对比。结果表明:(1)桓台县1979-2018年月降雨量数据有微弱的上升趋势,预测未来将呈微弱下降趋势,其第一主周期是19(月),数据不存在明显的突变情况。(2)NAR神经网络所得2017-2018年的月降雨量预测值与实测值误差为16.79%。展开更多
文摘短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。
文摘时间序列数据广泛来源于社会各个领域,从气象学到金融学再到医学,准确的长期预测是时间序列数据分析、处理与研究中的一个关键问题。针对时间序列数据中存在的不同尺度相关性的挖掘与利用,提出一种基于神经网络的多尺度信息融合时间序列长期预测模型ScaleNN,旨在更好地处理时间序列数据中的多尺度问题,从而实现更准确的长期预测。首先,结合全连接神经网络和卷积神经网络,有效提取全局信息与局部信息,并将2种信息聚合后进行预测;其次,通过在全局信息表征模块中引入压缩机制,以更轻量化的结构接受更长的序列输入,增大模型的感知范围并提高模型效能。大量实验结果表明,ScaleNN在多个真实世界数据集上的性能优于当前该领域的优秀模型PatchTST(Patch Time Series Transformer),在运行时间降低35%的同时仅需19%的参数量。可见,ScaleNN可广泛应用于不同领域的时间序列预测问题,为交通流量预测、天气预报等领域提供预测的基础。
文摘针对滚动轴承全寿命周期监测数据不足导致剩余寿命预测精度不高的问题,提出一种基于时间序列数据扩增和双向长短时记忆(bidirectional long-short term memory, BLSTM)网络的剩余寿命预测方法。首先,采集训练用滚动轴承全寿命周期振动加速度和测试轴承振动加速度数据。其次,对采集得到的原始数据预处理后提取健康因子,将训练用数据和测试数据分别构成参考数据集和目标数据集。然后,以参考数据集为基础,利用动态时间规整算法扩增目标数据集数据。最后,使用数据扩增后的测试数据训练BLSTM网络,利用训练好的BLSTM网络预测滚动轴承性能退化趋势和剩余寿命。实验结果表明,基于动态时间规整算法的数据扩增模型能够根据已有全寿命周期数据,扩增性能退化过程相似的滚动轴承运行数据,利用扩增数据训练BLSTM网络,能够有效提高性能退化趋势预测能力,进而提高剩余寿命预测精度。
文摘研究建立了基于时间序列分解的神经网络模型,能对降雨时间序列挖掘并预测。(1)以桓台县1979-2018年的480组月降雨数据为例,将降雨时间序列分解为趋势项、周期项、突变项与随机项。(2)采用累积距平法、Mann-Kendall趋势分析法、Hurst指数法、特征点法方法进行趋势性分析;小波分析法进行周期性分析;Mann-Kendall突变检验法和Pettitt法进行突变性分析;采用自相关法和单位根法对随机项进行检验。(3)以1979-2014年的432组月降雨时间序列随机项为率定数据,2015-2016年数据为验证数据,分别建立NAR(Nonlinear Auto Regression)与NARX(Nonlinear Auto Regression with External Input)神经网络随机项预测模型,对2017-2018年月降雨数据进行预测,并与直接预测结果对比。结果表明:(1)桓台县1979-2018年月降雨量数据有微弱的上升趋势,预测未来将呈微弱下降趋势,其第一主周期是19(月),数据不存在明显的突变情况。(2)NAR神经网络所得2017-2018年的月降雨量预测值与实测值误差为16.79%。