期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于解析模型和机器学习的隧道衬砌压力预测模型
1
作者 徐于杰 王华宁 +1 位作者 胡韬 宋飞 《水资源与水工程学报》 CSCD 北大核心 2024年第6期169-177,共9页
在流变软岩中进行水工隧道施工时,围岩-衬砌相互作用将在接触面处产生与时间相关的支护力。合理预测支护力对衬砌结构设计和围岩稳定性分析至关重要。然而,黏弹塑性问题的数值模拟需要长时间的计算迭代和复杂的前后处理,而解析方法则面... 在流变软岩中进行水工隧道施工时,围岩-衬砌相互作用将在接触面处产生与时间相关的支护力。合理预测支护力对衬砌结构设计和围岩稳定性分析至关重要。然而,黏弹塑性问题的数值模拟需要长时间的计算迭代和复杂的前后处理,而解析方法则面临公式推导与程序实现的难题,限制了推广应用。基于衬砌支护隧道的黏弹塑性解析模型生成大量数据集,将围岩和衬砌材料特性及几何参数等6个核心参数作为特征,利用LightGBM机器学习方法建立了稳态支护力的数据驱动预测模型。结果表明:该模型在测试集上的预测效果稳定,训练集与测试集的校正决定系数均超过0.9,平均绝对百分比误差低于4.2%,显著优于XGBoost及SVR等其他机器学习算法。此外,利用SHAP方法分析了输入特征与预测结果之间的依赖性,增强了模型的可解释性。该预测模型不仅能快速准确地进行稳态支护力预测,还能应用于衬砌设计和其他反分析工作,具有较高的工程应用价值。 展开更多
关键词 隧道衬砌支护力 黏弹塑性 LightGBM算法 机器学习 数据驱动预测模型
在线阅读 下载PDF
融合SDE算法和双路加权门控循环神经网络的股价走势预测模型 被引量:2
2
作者 吴彬 张勇 唐颖军 《小型微型计算机系统》 CSCD 北大核心 2021年第7期1371-1376,共6页
关于股票价格走势的预测,传统的操作方法多是通过统计分析工具或者是单一的机器学习算法进行预测,很难准确把握股价这种时间序列数据的非线性和非平稳性等特征,从而使预测精度受限.融合SDE算法与加权BiGRU网络的优化预测模型,先使用SDE... 关于股票价格走势的预测,传统的操作方法多是通过统计分析工具或者是单一的机器学习算法进行预测,很难准确把握股价这种时间序列数据的非线性和非平稳性等特征,从而使预测精度受限.融合SDE算法与加权BiGRU网络的优化预测模型,先使用SDE全局寻优网络的结构参数,求得最优初始权值、阈值以及权重系数,再将优化的参数应用到改良的加权BiGRU网络模型中进行预测.优化的预测模型能够有选择的考虑过去和未来时间点对当前时刻数据的影响,而且能有效避免局部最优值以及网络的长程依赖问题.实验结果表明,优化的预测模型与其他传统神经网络预测模型相比较,预测误差得到显著降低,预测准确度得到明显增强. 展开更多
关键词 自适应差分进化算法 双路加权门控循环单元 循环神经网络 数据预测模型 股价走势
在线阅读 下载PDF
地震应急数据库中人口数据预测——以乌鲁木齐市为例 被引量:4
3
作者 谢江丽 李帅 姚远 《中国地震》 北大核心 2019年第2期389-398,共10页
利用统计年鉴、人口普查数据、遥感影像等资料,将乌鲁木齐市按区县级行政区域为单位提取近10年的人口数据,确定各区县历年来人口分布变化情况。挖掘研究区内人口-时间变量关系,建立人口预测模型——GM(1,1)模型,预测未来2年乌鲁木齐各... 利用统计年鉴、人口普查数据、遥感影像等资料,将乌鲁木齐市按区县级行政区域为单位提取近10年的人口数据,确定各区县历年来人口分布变化情况。挖掘研究区内人口-时间变量关系,建立人口预测模型——GM(1,1)模型,预测未来2年乌鲁木齐各区县人口数据,以弥补数据库数据因滞后2年无法及时更新所导致的数据空缺。 展开更多
关键词 GM(1 1)模型人口预测应急数据乌鲁木齐
在线阅读 下载PDF
生物信息学研究进展 被引量:9
4
作者 孙敏 马月辉 叶绍辉 《家畜生态学报》 2006年第1期6-10,共5页
随着计算机科学和生物科学的迅猛发展,由此而诞生的生物信息学逐渐发展成为一门独立的学科。它将会成为21世纪生命科学中的重要研究领域之一。本文简单介绍了生物信息学的产生,发展,研究内容,应用及未来的发展方向等。
关键词 生物信息学 基因组学 蛋白质组学 算法问题 数据预测分析模型
在线阅读 下载PDF
分布式电驱动车辆极限越野环境下高速避障与稳定性控制 被引量:13
5
作者 刘聪 刘辉 +1 位作者 韩立金 陈科 《兵工学报》 EI CAS CSCD 北大核心 2021年第10期2102-2113,共12页
为提高分布式电驱动车辆在极限越野环境下的高速避障能力和操纵稳定性,提出一种充分考虑车辆过弯姿态反馈的分层协调横向稳定性控制方法。上层控制器将多模型在线建模算法与非线性模型预测控制理论相结合,构建一种基于数据驱动多模型预... 为提高分布式电驱动车辆在极限越野环境下的高速避障能力和操纵稳定性,提出一种充分考虑车辆过弯姿态反馈的分层协调横向稳定性控制方法。上层控制器将多模型在线建模算法与非线性模型预测控制理论相结合,构建一种基于数据驱动多模型预测控制的横摆、侧倾运动协调控制器。由于车辆不同的横向失稳状态下最优控制中心是时变的,细化并重构一种双层融合型横摆运动动力学模型。考虑到越野工况存在时变道路曲率和侧向坡度,建立零力矩点侧倾失稳判断模型,在横摆稳定性控制基础上引入侧倾稳定性控制约束。下层控制器结合各轮胎滑动率和垂直载荷转移量,采用二次规划求解算法将融合型期望横摆力矩转化为各轮最优驱动转矩。搭建MATLAB/Simulink软件和Carsim软件联合仿真平台,进行仿真实验验证。结果表明,该分层协调控制策略可充分发挥分布式电驱动车辆在极限越野工况下的高机动转向性能,具有较强的车身姿态修正能力,可以提高车辆的路径保持精度和过弯横向稳定性。 展开更多
关键词 分布式电驱动车辆 极限越野环境 稳定性控制 高速避障 数据驱动多模型预测控制
在线阅读 下载PDF
Vehicle actuation based short-term traffic flow prediction model for signalized intersections 被引量:8
6
作者 SUN Jian ZHANG Lun 《Journal of Central South University》 SCIE EI CAS 2012年第1期287-298,共12页
Traffic flow prediction is an important component for real-time traffic-adaptive signal control in urban arterial networks.By exploring available detector and signal controller information from neighboring intersectio... Traffic flow prediction is an important component for real-time traffic-adaptive signal control in urban arterial networks.By exploring available detector and signal controller information from neighboring intersections,a dynamic data-driven flow prediction model was developed.The model consists of two prediction components based on the signal states(red or green) for each movement at an upstream intersection.The characteristics of each signal state were carefully examined and the corresponding travel time from the upstream intersection to the approach in question at the downstream intersection was predicted.With an online turning proportion estimation method,along with the predicted travel times,the anticipated vehicle arrivals can be forecasted at the downstream intersection.The model performance was tested at a set of two signalized intersections located in the city of Gainesville,Florida,USA,using the CORSIM microscopic simulation package.Analysis results show that the model agrees well with empirical arrival data measured at 10 s intervals within an acceptable range of 10%-20%,and show a normal distribution.It is reasonably believed that the model has potential applicability for use in truly proactive real-time traffic adaptive signal control systems. 展开更多
关键词 adaptive signal control least-squared estimation microscopic simulation travel flow prediction urban arterials
在线阅读 下载PDF
Hybrid LEAP modeling method for long-term energy demand forecasting of regions with limited statistical data 被引量:4
7
作者 CHEN Rui RAO Zheng-hua LIAO Sheng-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2136-2148,共13页
An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited i... An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited in many regions. In this paper, on the basis of comprehensive literature review, we proposed a hybrid model based on the long-range alternative energy planning (LEAP) model to improve the accuracy of energy demand forecasting in these regions. By taking Hunan province, China as a typical case, the proposed hybrid model was applied to estimating the possible future energy demand and energy-saving potentials in different sectors. The structure of LEAP model was estimated by Sankey energy flow, and Leslie matrix and autoregressive integrated moving average (ARIMA) models were used to predict the population, industrial structure and transportation turnover, respectively. Monte-Carlo method was employed to evaluate the uncertainty of forecasted results. The results showed that the hybrid model combined with scenario analysis provided a relatively accurate forecast for the long-term energy demand in regions with limited statistical data, and the average standard error of probabilistic distribution in 2030 energy demand was as low as 0.15. The prediction results could provide supportive references to identify energy-saving potentials and energy development pathways. 展开更多
关键词 energy demand forecasting with limited data hybrid LEAP model ARIMA model Leslie matrix Monte-Carlo method
在线阅读 下载PDF
Modeling hot strip rolling process under framework of generalized additive model 被引量:3
8
作者 LI Wei-gang YANG Wei +2 位作者 ZHAO Yun-tao YAN Bao-kang LIU Xiang-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2379-2392,共14页
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener... This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling. 展开更多
关键词 industrial big data generalized additive model mechanical property prediction deformation resistance prediction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部