期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于平行交互注意力网络的中文电子病历实体及关系联合抽取 被引量:2
1
作者 李丽双 王泽昊 +1 位作者 秦雪洋 袁光辉 《中文信息学报》 CSCD 北大核心 2024年第6期108-118,共11页
基于电子病历构建医学知识图谱对医疗技术的发展具有重要意义,实体和关系抽取是构建知识图谱的关键技术。该文针对目前实体关系联合抽取中存在的特征交互不充分的问题,提出了一种平行交互注意力网络(PIAN)以充分挖掘实体与关系的相关性... 基于电子病历构建医学知识图谱对医疗技术的发展具有重要意义,实体和关系抽取是构建知识图谱的关键技术。该文针对目前实体关系联合抽取中存在的特征交互不充分的问题,提出了一种平行交互注意力网络(PIAN)以充分挖掘实体与关系的相关性,在多个标准的医学和通用数据集上取得最优结果;当前中文医学实体及关系标注数据集较少,该文基于中文电子病历构建了实体和关系抽取数据集(CEMRIE),与医学专家共同制定了语料标注规范,并基于该文所提出的模型实验得出基准结果。 展开更多
关键词 实体关系联合抽取 双向特征交互模块 自注意力机制 中文电子病历 数据集标注与构建
在线阅读 下载PDF
基于深度学习的分心驾驶行为检测方法 被引量:5
2
作者 曹立波 杨洒 +2 位作者 艾昌硕 颜京才 李旭升 《汽车技术》 CSCD 北大核心 2023年第6期49-54,共6页
针对现有分心驾驶行为检测方法存在的检测精度低、实时性差等问题,利用基于深度学习的目标检测方法进行了驾驶员分心驾驶行为检测,首先构建分心驾驶行为数据集,包括驾驶员使用手机、饮水和吸烟3种行为的图像,并进行目标物的标注,然后选... 针对现有分心驾驶行为检测方法存在的检测精度低、实时性差等问题,利用基于深度学习的目标检测方法进行了驾驶员分心驾驶行为检测,首先构建分心驾驶行为数据集,包括驾驶员使用手机、饮水和吸烟3种行为的图像,并进行目标物的标注,然后选用轻量化目标检测模型NanoDet进行训练验证,结果表明,该方法可以准确并快速地识别出驾驶员在驾驶过程中使用手机、饮水和吸烟的行为。 展开更多
关键词 分心驾驶 目标检测 数据集标注 轻量化模型
在线阅读 下载PDF
结合区域检测和注意力机制的胸片自动定位与识别
3
作者 朱伟 张帅 +4 位作者 辛晓燕 李文飞 王骏 张建 王炜 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期591-600,共10页
胸部X光片(以下简称胸片)是胸部相关疾病的常用诊断手段,具有辐射量低、速度快、价格低廉等优点,但样本数量巨大,所以开发基于人工智能的、对胸片进行自动识别、分类以及定位的系统具有重大的应用价值.由于胸片拍摄设备不同、胸片质量... 胸部X光片(以下简称胸片)是胸部相关疾病的常用诊断手段,具有辐射量低、速度快、价格低廉等优点,但样本数量巨大,所以开发基于人工智能的、对胸片进行自动识别、分类以及定位的系统具有重大的应用价值.由于胸片拍摄设备不同、胸片质量参差不齐、涉及疾病众多,尤其是缺乏标注框数据集等问题,将深度学习用于胸片的疾病检测和定位仍是一项具有挑战性的任务.为此构建了胸片标注框数据集Chest‐box,该数据集中包含3952张阳性胸片和9960个标注框.基于此数据集,提出并训练了一个区域检测网络模型,用于提取胸片中所有可能的病变区域,即图像处理领域中的感兴趣区域.以区域检测网络提取的感兴趣区域为注意力信息,进一步发展了DenseNet卷积网络和注意力机制相结合的方法,通过融合原始胸片和感兴趣区域的特征,使模型更专注于感兴趣区域,再对疾病进行识别和定位.在ChestX‐ray14数据集上的测试表明,该网络模型相比之前的工作,具有极佳的分类性能,并能提供更好的疾病定位信息. 展开更多
关键词 胸片 深度学习 卷积神经网络 标注数据 区域检测网络 注意力机制网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部