期刊文献+
共找到131篇文章
< 1 2 7 >
每页显示 20 50 100
不平衡数据集下的数据中心网络流量异常检测
1
作者 王光明 李冬青 蒋从锋 《计算机工程》 北大核心 2025年第8期227-237,共11页
数据中心作为信息化时代的重要基础设施,承载着各类关键信息服务。目前,数据中心是网络攻击的主要攻击目标。为了提高网络安全,提出数据中心网络流量异常检测方法。研究内容包括特征选择、不平衡数据集分类和异常流量检测。首先,提出了... 数据中心作为信息化时代的重要基础设施,承载着各类关键信息服务。目前,数据中心是网络攻击的主要攻击目标。为了提高网络安全,提出数据中心网络流量异常检测方法。研究内容包括特征选择、不平衡数据集分类和异常流量检测。首先,提出了一种处理不平衡数据集的分类方法,通过基于集成的特征选择和混合采样算法提高分类性能;其次,引入基于随机森林(RF)和LightGBM的流量异常检测方法,充分利用它们在处理不平衡数据和噪声抵抗方面的优势。在CSE-CIC-IDS2018公开数据集上进行验证,实验结果表明,所提方法具有较高的精确率和召回率,在15种流量类型中有9种类型的分类精确率都高于90%,并且有13种类型的分类精确率都在74%以上,对提高数据中心安全、保障服务质量和改善网络流量异常检测具有重要意义。 展开更多
关键词 数据中心 网络流量 异常检测 不平衡数据 成学习
在线阅读 下载PDF
不平衡数据集的自然邻域超球面过采样方法 被引量:2
2
作者 周玉 岳学震 +1 位作者 刘星 王培崇 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第12期81-95,共15页
为解决数据集类别不平衡问题,针对不平衡数据集分类提出了一种实现不平衡数据集高性能分类的自然邻域超球面过采样方法(natural neighborhood hypersphere oversampling method,NNHOS)。首先,对不平衡数据集中的每个样本点搜索其自然邻... 为解决数据集类别不平衡问题,针对不平衡数据集分类提出了一种实现不平衡数据集高性能分类的自然邻域超球面过采样方法(natural neighborhood hypersphere oversampling method,NNHOS)。首先,对不平衡数据集中的每个样本点搜索其自然邻居直至形成稳定的自然邻域;接着,根据每个样本点自然邻居的标签特点,将所有样本点划分为异常点、噪声点、多数类安全点、少数类安全点和少数类边界点5个区域;然后,对每个少数类边界点构建超球面,合并完全处于大超球面中的小超球面,形成一个超球面集合;最后,根据超球面半径大小自适应地为每个超球面分配采样比例,在超球面内生成指定个数的新样本点得到平衡数据集。结果表明,利用该方法在人工数据集和真实数据集上进行过采样形成新的样本集,以CART,SVM和KNN 3个分类器进行实验,并与其他8种常用方法进行对比分析。同时,以AUC值、F_(1)和G_(m)作为评价指标,进一步证明了该方法可以更好的对不平衡数据集进行分类。 展开更多
关键词 不平衡数据 过采样 自然邻居 超球面 分类
在线阅读 下载PDF
不平衡数据集的DC-SMOTE过采样方法 被引量:2
3
作者 冀常鹏 尚佳奇 代巍 《智能系统学报》 CSCD 北大核心 2024年第3期525-533,共9页
针对不平衡数据集在分类任务中表现不佳的问题,提出基于局部密度与集中度的过采样算法。针对数据集中所有的少数类样本点,分别利用高斯核函数与局部引力来计算局部密度与集中度;对于局部密度较小的部分有针对性地合成第一类新样本,解决... 针对不平衡数据集在分类任务中表现不佳的问题,提出基于局部密度与集中度的过采样算法。针对数据集中所有的少数类样本点,分别利用高斯核函数与局部引力来计算局部密度与集中度;对于局部密度较小的部分有针对性地合成第一类新样本,解决类内不平衡问题。根据集中度的不同,区分出少数类样本的边界,有针对性地合成第二类新样本,达到强化边界的作用;同时,通过自适应生成新样本,有效解决大部分过采样算法没有明确过采样量或者盲目追求样本平衡度相等的问题。最后,在公开的12个不平衡数据集上进行了实验,实验结果表明,本算法在低不平衡数据集与高不平衡数据集上的应用均拥有良好的表现。 展开更多
关键词 不平衡数据 过采样 高斯核函数 局部引力 不平衡数据 合成少数类过采样 不平衡 分类
在线阅读 下载PDF
基于集成学习的不平衡图节点分类算法
4
作者 赵华健 杨钦程 胡兆龙 《电子科技大学学报》 北大核心 2025年第3期455-463,共9页
图神经网络(GNN)被广泛应用于节点分类。然而,现有研究集中于平衡数据集,但是不平衡数据却普遍存在。传统处理不平衡数据集的方法,如重采样和重加权,往往需要进行较多的预处理或提出新的网络结构,容易引入新的偏差并导致信息丢失。该文... 图神经网络(GNN)被广泛应用于节点分类。然而,现有研究集中于平衡数据集,但是不平衡数据却普遍存在。传统处理不平衡数据集的方法,如重采样和重加权,往往需要进行较多的预处理或提出新的网络结构,容易引入新的偏差并导致信息丢失。该文提出了一种改良的装袋(Bagging)集成学习方法,对不平衡图数据集进行了k折划分,并采用GNN为基础模型对子数据集进行训练得到多个不同的子模型。最后,通过融合不同模型来提升节点的分类精度而不引入过多的预处理。基于不平衡图数据集的实验结果,表明所提出的方法在准确性和鲁棒性上优于基本分类器,此外,还发现分类精度随着k的增加先提高后降低。 展开更多
关键词 图神经网络 节点分类 图网络结构 不平衡数据 成学习
在线阅读 下载PDF
面向高维不平衡数据的特征选择算法 被引量:3
5
作者 王振飞 袁佩瑶 +1 位作者 曹中亚 张利莹 《小型微型计算机系统》 CSCD 北大核心 2024年第8期1839-1846,共8页
针对传统高维不平衡数据集的分类算法存在偏向多数类、忽视少数类等问题,本文提出一种基于密度聚类和重要性度量的特征选择算法(DBIM).首先通过随机降采样的方法构造出多个平衡子集,使用DBSCAN密度聚类方法作为基分类器生成初始特征子空... 针对传统高维不平衡数据集的分类算法存在偏向多数类、忽视少数类等问题,本文提出一种基于密度聚类和重要性度量的特征选择算法(DBIM).首先通过随机降采样的方法构造出多个平衡子集,使用DBSCAN密度聚类方法作为基分类器生成初始特征子空间.然后按照重要度对特征进行排序选择出较强分类的特征.最后,为了避免特征之间的冗余性,设计基于类分布的权重指标与冗余性评价指标相结合的方法进行计算,生成高质量的特征子集.在8个公开数据集上的实验结果表明,本文提出DBIM算法可以生成高相关度且低冗余度的特征子集,对高维不平衡数据集进行有效降维,提高分类性能. 展开更多
关键词 高维不平衡数据 密度聚类 特征选择 相关性 冗余性
在线阅读 下载PDF
改进SMOTE的非平衡数据集分类算法研究 被引量:28
6
作者 赵清华 张艺豪 +1 位作者 马建芬 段倩倩 《计算机工程与应用》 CSCD 北大核心 2018年第18期168-173,共6页
针对随机森林和SMOTE组合算法在处理不平衡数据集上存在数据集边缘化分布以及计算复杂度大等问题,提出了基于SMOTE的改进算法TSMOTE(triangle SMOTE)和MDSMOTE(Max Distance SMOTE),其核心思想是将新样本的产生限制在一定区域,使得样本... 针对随机森林和SMOTE组合算法在处理不平衡数据集上存在数据集边缘化分布以及计算复杂度大等问题,提出了基于SMOTE的改进算法TSMOTE(triangle SMOTE)和MDSMOTE(Max Distance SMOTE),其核心思想是将新样本的产生限制在一定区域,使得样本集分布趋于中心化,用更少的正类样本点人为构造样本,从而达到限制样本区域、降低算法复杂度的目的。在6种不平衡数据集上的大量实验表明,改进算法与传统算法相比,算法消耗时间大幅减少,取得更高的G-mean值、F-value值和AUC值。 展开更多
关键词 随机森林 SMOTE算法 不平衡数据
在线阅读 下载PDF
改进型加权KNN算法的不平衡数据集分类 被引量:26
7
作者 王超学 潘正茂 +2 位作者 马春森 董丽丽 张涛 《计算机工程》 CAS CSCD 2012年第20期160-163,168,共5页
K最邻近(KNN)算法对不平衡数据集进行分类时分类判决总会倾向于多数类。为此,提出一种加权KNN算法GAK-KNN。定义新的权重分配模型,综合考虑类间分布不平衡及类内分布不均匀的不良影响,采用基于遗传算法的K-means算法对训练样本集进行聚... K最邻近(KNN)算法对不平衡数据集进行分类时分类判决总会倾向于多数类。为此,提出一种加权KNN算法GAK-KNN。定义新的权重分配模型,综合考虑类间分布不平衡及类内分布不均匀的不良影响,采用基于遗传算法的K-means算法对训练样本集进行聚类,按照权重分配模型计算各训练样本的权重,通过改进的KNN算法对测试样本进行分类。基于UCI数据集的大量实验结果表明,GAK-KNN算法的识别率和整体性能都优于传统KNN算法及其他改进算法。 展开更多
关键词 不平衡数据 分类 K最邻近算法 权重分配模型 遗传算法 K-MEANS算法
在线阅读 下载PDF
不平衡数据集上的Relief特征选择算法 被引量:15
8
作者 菅小艳 韩素青 崔彩霞 《数据采集与处理》 CSCD 北大核心 2016年第4期838-844,共7页
Relief算法为系列特征选择方法,包括最早提出的Relief算法和后来拓展的ReliefF算法,核心思想是对分类贡献大的特征赋予较大的权值;特点是算法简单,运行效率高,因此有着广泛的应用。但直接将Relief算法应用于有干扰的数据集或不平衡数据... Relief算法为系列特征选择方法,包括最早提出的Relief算法和后来拓展的ReliefF算法,核心思想是对分类贡献大的特征赋予较大的权值;特点是算法简单,运行效率高,因此有着广泛的应用。但直接将Relief算法应用于有干扰的数据集或不平衡数据集,效果并不理想。基于Relief算法,提出一种干扰数据特征选择算法,称为阈值-Relief算法,有效消除了干扰数据对分类结果的影响。结合K-means算法,提出两种不平衡数据集特征选择算法,分别称为K-means-ReliefF算法和K-means-Relief抽样算法,有效弥补了Relief算法在不平衡数据集上表现出的不足。实验证明了本文算法的有效性。 展开更多
关键词 特征选择 RELIEF算法 RELIEFF算法 不平衡数据
在线阅读 下载PDF
不平衡数据集上的文本分类特征选择新方法 被引量:8
9
作者 张玉芳 王勇 +1 位作者 熊忠阳 刘明 《计算机应用研究》 CSCD 北大核心 2011年第12期4532-4534,共3页
针对不平衡数据集上进行文本分类,传统的特征选择方法容易导致分类器倾向于大类而忽视小类,提出一种新的特征选择方法 IPR(integrated probability ratio)。该方法综合考虑特征在正类和负类中的分布性质,结合四种衡量特征类别相关性的... 针对不平衡数据集上进行文本分类,传统的特征选择方法容易导致分类器倾向于大类而忽视小类,提出一种新的特征选择方法 IPR(integrated probability ratio)。该方法综合考虑特征在正类和负类中的分布性质,结合四种衡量特征类别相关性的指标对特征词进行评分,能够更好地解决传统特征选择方法在不平衡数据集上的不适应性,在不降低大类分类性能的同时提高了小类的识别率。实验结果表明,该方法有效可行。 展开更多
关键词 不平衡数据 文本分类 特征选择 正类 负类
在线阅读 下载PDF
基于支持向量机的不平衡数据集分类方法研究 被引量:16
10
作者 杨智明 彭宇 彭喜元 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第5期1094-1099,共6页
研究表明支持向量机分类方法在样本集分布不均衡情况下,对少类样本分类准确率急剧下降。针对该问题,本文提出了一种基于模糊样本集修剪技术和指导型欠采样技术的支持向量机分类算法,并对算法中新引入的参数进行了深入讨论。算法分析和... 研究表明支持向量机分类方法在样本集分布不均衡情况下,对少类样本分类准确率急剧下降。针对该问题,本文提出了一种基于模糊样本集修剪技术和指导型欠采样技术的支持向量机分类算法,并对算法中新引入的参数进行了深入讨论。算法分析和仿真结果表明,文中提出的方法在不增加计算复杂度的前提下,有效地提高了算法整体分类准确率。 展开更多
关键词 支持向量机 不平衡数据 模糊样本修剪 指导型欠采样
在线阅读 下载PDF
基于聚类权重分阶段的SVM解不平衡数据集分类 被引量:9
11
作者 王超学 张涛 马春森 《计算机工程与应用》 CSCD 北大核心 2015年第21期133-137,共5页
SVM在处理不平衡数据分类问题(class imbalance problem)时,其分类结果常倾向于多数类。为此,综合考虑类间不平衡和类内不平衡,提出一种基于聚类权重的分阶段支持向量机(WSVM)。预处理时,采用K均值算法得到多数类中各样本的权重。分类时... SVM在处理不平衡数据分类问题(class imbalance problem)时,其分类结果常倾向于多数类。为此,综合考虑类间不平衡和类内不平衡,提出一种基于聚类权重的分阶段支持向量机(WSVM)。预处理时,采用K均值算法得到多数类中各样本的权重。分类时,第一阶段根据权重选出多数类内各簇边界区域的与少数类数目相等的样本;第二阶段对选取的样本和少数类样本进行初始分类;第三阶段用多数类中未选取的样本对初始分类器进行优化调整,当满足停止条件时,得到最终分类器。通过对UCI数据集的大量实验表明,WSVM在少数类样本的识别率和分类器的整体性能上都优于传统分类算法。 展开更多
关键词 不平衡数据 权重分配模型 支持向量机(SVM)
在线阅读 下载PDF
基于后验概率的不平衡数据集特征选择算法 被引量:5
12
作者 曹苏群 王士同 陈晓峰 《计算机工程》 CAS CSCD 北大核心 2008年第19期1-3,共3页
针对不平衡数据集,提出一种基于后验概率的特征选择算法。该算法引入基于Parzen-window方法估算的不均衡因子,并以Tomeklinks中点为初始值进行迭代,找出满足后验概率相等的判别边界点,通过对这些点法向量进行投影计算得到各特征的权值... 针对不平衡数据集,提出一种基于后验概率的特征选择算法。该算法引入基于Parzen-window方法估算的不均衡因子,并以Tomeklinks中点为初始值进行迭代,找出满足后验概率相等的判别边界点,通过对这些点法向量进行投影计算得到各特征的权值。实验表明,对于不平衡数据集,该算法在不降低分类器总体性能的基础上,不仅可以有效降低维度,节省计算开销,而且能够避免常规特征选择算法用于不平衡数据时忽视小类的缺点。 展开更多
关键词 不平衡数据 特征选择 后验概率
在线阅读 下载PDF
面向不平衡数据集的改进型SMOTE算法 被引量:26
13
作者 王超学 张涛 马春森 《计算机科学与探索》 CSCD 2014年第6期727-734,共8页
针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使... 针对SMOTE(synthetic minority over-sampling technique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法GA-SMOTE。该算法的关键将是遗传算法中的3个基本算子引入到SMOTE中,利用选择算子实现对少数类样本有区别的选择,使用交叉、变异算子实现对合成样本质量的控制。结合GA-SMOTE与SVM(support vector machine)算法来处理不平衡数据的分类问题。UCI数据集上的大量实验表明,GA-SMOTE在新样本的整体合成效果上表现出色,有效提高了SVM在不平衡数据集上的分类性能。 展开更多
关键词 不平衡数据 分类 遗传算子 少数类样本合成过采样技术(SMOTE) SYNTHETIC MINORITY OVER-SAMPLING technique (SMOTE)
在线阅读 下载PDF
考虑小波奇异信息与不平衡数据集的输电线路故障识别方法 被引量:49
14
作者 黄建明 李晓明 +1 位作者 瞿合祚 张礼得 《中国电机工程学报》 EI CSCD 北大核心 2017年第11期3099-3107,共9页
鉴于输电线路故障识别中数据集的非均衡性问题,提出一种基于小波奇异信息和改进合成少数类过采样(synthetic minority over-sampling technique,SMOTE)算法的输电线路故障识别方法。首先,通过PSCAD/EMTDC仿真构造输电线路故障不平衡数据... 鉴于输电线路故障识别中数据集的非均衡性问题,提出一种基于小波奇异信息和改进合成少数类过采样(synthetic minority over-sampling technique,SMOTE)算法的输电线路故障识别方法。首先,通过PSCAD/EMTDC仿真构造输电线路故障不平衡数据集,结合平稳小波变换(stationary wavelet transform,SWT)与奇异值分解(singular value decomposition,SVD)技术提取相电流及零序电流的故障分量的小波奇异值作为特征参数,然后采用改进SMOTE算法在少数类的样本中心邻域进行插值再抽样处理,调整数据集的不平衡度,利用优化后的数据集训练支持向量机(support vector machine,SVM)组合分类器,对不同故障工况下的10种输电线路故障类型进行分类识别。仿真结果表明,该文的方法能有效地提高分类算法在样本数据不平衡的情况下对少数类的识别能力和整体的识别准确率,具有较好的泛化性和较强的鲁棒性,并且对多种分类算法同样适用。 展开更多
关键词 输电线路 故障类型识别 平稳小波变换 奇异值分解 不平衡数据 过采样 支持向量机
在线阅读 下载PDF
不平衡数据集的神经网络阈值优化方法 被引量:3
15
作者 李明方 张化祥 +1 位作者 张雯 计华 《计算机工程与应用》 CSCD 北大核心 2010年第20期168-171,共4页
不平衡数据集分类为机器学习热点研究问题之一,近年来研究人员提出很多理论和算法以改进传统分类技术在不平衡数据集上的性能,其中用阈值判定标准确定神经网络中的阈值是重要的方法之一。常用的阈值判定标准存在一定缺点,如不能使少数... 不平衡数据集分类为机器学习热点研究问题之一,近年来研究人员提出很多理论和算法以改进传统分类技术在不平衡数据集上的性能,其中用阈值判定标准确定神经网络中的阈值是重要的方法之一。常用的阈值判定标准存在一定缺点,如不能使少数类及多数类分类精度同时取得最好、过于偏好多数类的精度等。为此提出一种新的阈值判定标准,依据该标准能够使少数类及多数类分类精度同时取得最好而不受样例类别比例的影响。以神经网络与遗传算法相结合训练分类器,作为阈值选择条件和分类器的评价标准,新标准能够得到较好的结果。 展开更多
关键词 不平衡数据 阈值判定标准 神经网络 遗传算法
在线阅读 下载PDF
基于对不平衡数据集进行二次迁移学习的滚动轴承剥落类故障诊断方法 被引量:5
16
作者 郭俊锋 王淼生 王智明 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第11期1512-1521,共10页
滚动轴承在运行过程中正常工作状态时间长,故障时间很短,导致数据集不平衡,从而极大地影响深度学习模型故障诊断的准确率.针对该问题,提出一种基于二次迁移学习的滚动轴承不平衡数据集故障诊断方法.首先使用源域和目标域中的少量数据通... 滚动轴承在运行过程中正常工作状态时间长,故障时间很短,导致数据集不平衡,从而极大地影响深度学习模型故障诊断的准确率.针对该问题,提出一种基于二次迁移学习的滚动轴承不平衡数据集故障诊断方法.首先使用源域和目标域中的少量数据通过条件梯度惩罚生成对抗网络(CWGAN-GP)生成过渡数据集,然后将搭建好的卷积神经网络模型在源域数据集、过渡数据集和目标域数据集之间进行两次迁移,最后使用目标域的少量数据对迁移后的模型进行微调,得到最终的故障诊断模型.实验结果表明,该方法对不同工况下数据集不平衡的滚动轴承剥落类故障有较好的诊断识别效果. 展开更多
关键词 迁移学习 故障诊断 不平衡数据 生成对抗网络
在线阅读 下载PDF
基于混合采样的不平衡数据集算法研究 被引量:5
17
作者 张明 胡晓辉 吴嘉昕 《计算机工程与应用》 CSCD 北大核心 2019年第17期68-75,共8页
针对不平衡数据集分类效果不理想的问题,提出了一种新的基于混合采样的不平衡数据集算法(BSI)。通过引进“变异系数”找出样本的稀疏域和密集域,针对稀疏域中的少数类样本,提出了一种改进SMOTE算法的过采样方法(BSMOTE);对密集域中的多... 针对不平衡数据集分类效果不理想的问题,提出了一种新的基于混合采样的不平衡数据集算法(BSI)。通过引进“变异系数”找出样本的稀疏域和密集域,针对稀疏域中的少数类样本,提出了一种改进SMOTE算法的过采样方法(BSMOTE);对密集域中的多数类样本,提出了一种改进的欠采样方法(IS)。通过在六种不平衡数据集上的实验表明,该算法与传统算法相比,取得了更高的G-mean值、F-value值、AUC值,有效改善了不平衡数据集的综合分类性能。 展开更多
关键词 不平衡数据 变异系数 SMOTE算法 欠采样
在线阅读 下载PDF
一种适合不平衡数据集的新型提升算法 被引量:3
18
作者 王灿伟 于治楼 张化祥 《计算机工程与应用》 CSCD 北大核心 2011年第28期169-172,175,共5页
提出了一种新的适用于不平衡数据集的Adaboost算法(ILAdaboost),该算法利用每一轮学习到的基分类器对原始数据集进行测试评估,并根据评估结果将原始数据集分成四个子集,然后在四个子集中重新采样形成平衡的数据集供下一轮基分类器学习,... 提出了一种新的适用于不平衡数据集的Adaboost算法(ILAdaboost),该算法利用每一轮学习到的基分类器对原始数据集进行测试评估,并根据评估结果将原始数据集分成四个子集,然后在四个子集中重新采样形成平衡的数据集供下一轮基分类器学习,由于抽样过程中更加倾向于少数类和分错的多数类,故合成分类器的分界面会偏离少数类。该算法在UCI的10个典型不平衡数据集上进行实验,在保证多数类分类精度的同时提高了少数类的分类精度以及GMA。 展开更多
关键词 不平衡数据 成学习 ADABOOST 重采样
在线阅读 下载PDF
一种改进的不平衡数据集分类方法 被引量:1
19
作者 赵秀宽 阳建宏 +1 位作者 黎敏 徐金梧 《计算机工程》 CAS CSCD 北大核心 2011年第15期122-124,共3页
传统的机器学习方法在解决不平衡分类问题时,得到的分类器具有很大的偏向性,表现为少数类识别率远低于多数类。为此,在旋转森林分类方法的基础上,提出一种改进的不平衡数据处理方法——偏转森林。通过对少数类进行过抽样改变训练数据的... 传统的机器学习方法在解决不平衡分类问题时,得到的分类器具有很大的偏向性,表现为少数类识别率远低于多数类。为此,在旋转森林分类方法的基础上,提出一种改进的不平衡数据处理方法——偏转森林。通过对少数类进行过抽样改变训练数据的分布以减小数据的不平衡,采用随机抽取的方式确保生成偏转矩阵的样本间存在差异,从而提高集成分类器的分类精度。实验结果表明,该方法能取得较好的分类性能,具有较高的少数类识别正确率和较低的多数类识别错误率。 展开更多
关键词 不平衡数据 偏转森林 成分类器 过抽样
在线阅读 下载PDF
基于生成对抗网络的滚动轴承不平衡数据集故障诊断新方法 被引量:21
20
作者 郭俊锋 王淼生 +1 位作者 孙磊 续德锋 《计算机集成制造系统》 EI CSCD 北大核心 2022年第9期2825-2835,共11页
在实际工程应用中,滚动轴承在大多数时间都工作在正常状态下,故障状态时间很短。由于成本,让其长时间工作在故障状态是不现实的。这将造成故障诊断数据集的不平衡,即正常的样本远远多于故障的样本,而这会极大地影响故障诊断结果的准确... 在实际工程应用中,滚动轴承在大多数时间都工作在正常状态下,故障状态时间很短。由于成本,让其长时间工作在故障状态是不现实的。这将造成故障诊断数据集的不平衡,即正常的样本远远多于故障的样本,而这会极大地影响故障诊断结果的准确性和稳定性。针对该问题,提出一种基于Wasserstein距离条件梯度惩罚生成对抗网络(CWGAN-GP)的轴承不平衡数据集故障诊断方法,该方法能够稳定地生成高质量的样本。在故障诊断过程中,首先对生成样本的质量进行评估,然后对不平衡数据集进行逐步扩充与平衡。实验表明,该方法能够生成与真实样本高度相似的生成样本,并随着不平衡数据集被逐渐平衡,故障诊断的准确率也得到有效的提高。此外,CWGAN-GP模型在样本生成方面比其他生成模型具有更好的表现。 展开更多
关键词 故障诊断 不平衡数据 梯度惩罚 生成对抗网络 滚动轴承
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部