期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合二次特征提取和LSTM-Autoencoder的网络流量异常检测方法
被引量:
37
1
作者
孙旭日
刘明峰
+2 位作者
程辉
彭博
赵宇飞
《北京交通大学学报》
CAS
CSCD
北大核心
2020年第2期17-26,共10页
为解决大多数网络流量异常检测方法准确度低、误报率高等问题,提出一种基于长短期记忆网络自编码(LSTM-Autoencoder)的网络流量异常检测方法.首先,将真实网络流量从数据包和会话流级别两方面提取数据特征.为了丰富原始特征,采用离散小...
为解决大多数网络流量异常检测方法准确度低、误报率高等问题,提出一种基于长短期记忆网络自编码(LSTM-Autoencoder)的网络流量异常检测方法.首先,将真实网络流量从数据包和会话流级别两方面提取数据特征.为了丰富原始特征,采用离散小波变换(DWT)分解原始特征向量得到更高维特征.考虑真实网络环境可能存在异常数据,采用Grubbs准则对数据进行平滑操作,以防止非人为异常数据干扰训练LSTM-Autoencoder模型.使用已训练的LSTM-Autoencoder模型对训练数据进行重构,通过分析重构误差分布确定检测阈值.最后,对真实网络流量进行测试,分析了模型结构以及外部噪声对检测性能的影响,实验结果验证了所提方法的正确性.与其他基于数据重构的检测方法相比,所提方法具有更高的检测准确度和更优的检测性能.
展开更多
关键词
信息安全
长短期记忆网络
离散小波变换
自编码
Grubbs准则
数据重构量
异常检测
在线阅读
下载PDF
职称材料
题名
结合二次特征提取和LSTM-Autoencoder的网络流量异常检测方法
被引量:
37
1
作者
孙旭日
刘明峰
程辉
彭博
赵宇飞
机构
国网山东省电力公司青岛供电公司
北京航空航天大学计算机学院
出处
《北京交通大学学报》
CAS
CSCD
北大核心
2020年第2期17-26,共10页
基金
国家自然科学基金(U1636211)。
文摘
为解决大多数网络流量异常检测方法准确度低、误报率高等问题,提出一种基于长短期记忆网络自编码(LSTM-Autoencoder)的网络流量异常检测方法.首先,将真实网络流量从数据包和会话流级别两方面提取数据特征.为了丰富原始特征,采用离散小波变换(DWT)分解原始特征向量得到更高维特征.考虑真实网络环境可能存在异常数据,采用Grubbs准则对数据进行平滑操作,以防止非人为异常数据干扰训练LSTM-Autoencoder模型.使用已训练的LSTM-Autoencoder模型对训练数据进行重构,通过分析重构误差分布确定检测阈值.最后,对真实网络流量进行测试,分析了模型结构以及外部噪声对检测性能的影响,实验结果验证了所提方法的正确性.与其他基于数据重构的检测方法相比,所提方法具有更高的检测准确度和更优的检测性能.
关键词
信息安全
长短期记忆网络
离散小波变换
自编码
Grubbs准则
数据重构量
异常检测
Keywords
information safety
long short term memory
discrete wavelet transform
autoencoder
Grubbs criterion
data reconstruction
anomaly detection
分类号
TP393.0 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合二次特征提取和LSTM-Autoencoder的网络流量异常检测方法
孙旭日
刘明峰
程辉
彭博
赵宇飞
《北京交通大学学报》
CAS
CSCD
北大核心
2020
37
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部