针对相对重力观测过程中可能受到环境等因素影响而出现高频信号和局部异常的情况,以2021年漾濞6.4级地震前重力变化为例,通过时空平滑约束重构重力变化数据,对比重构前后重力变化情况。基于球坐标系下六面体模型模拟场源体介质,反演场...针对相对重力观测过程中可能受到环境等因素影响而出现高频信号和局部异常的情况,以2021年漾濞6.4级地震前重力变化为例,通过时空平滑约束重构重力变化数据,对比重构前后重力变化情况。基于球坐标系下六面体模型模拟场源体介质,反演场源视密度变化,分析场源区介质密度演化特征。结果显示:观测数据经过时空平滑重构后,在不改变总体变化趋势的情况下,标准差由17.86×10-8 m/s 2降到8.99×10-8 m/s 2,变化值区间从(-74.20~66.28)×10-8 m/s 2降到(-21.79~27.70)×10-8 m/s 2,数据离散程度得到有效压缩,并能压制高频信号和局部噪声,孕震区域内重力变化时空演化趋势更加连续,便于异常特征的识别。场源区视密度变化显示有一个明显的NW-SE向物质迁移过程,在经过震中位置后逐渐收缩,在震中位置形成一个“孤岛”形态。孕震过程中正负变化分界线从SW-NE向转为NW-SE向,在分界线与构造走向一致后随即发震。展开更多
在传统测向方法中,测向精度正比于阵列孔径,因此布阵空间与测向精度的矛盾性成为电子侦察系统在无人机等平台应用的主要工程约束之一。为实现空间受限下的高精度测向,提出一种通过协方差矩阵重构阵列接收数据的波达方向(Direction of Ar...在传统测向方法中,测向精度正比于阵列孔径,因此布阵空间与测向精度的矛盾性成为电子侦察系统在无人机等平台应用的主要工程约束之一。为实现空间受限下的高精度测向,提出一种通过协方差矩阵重构阵列接收数据的波达方向(Direction of Arrival,DOA)方法。结合均匀线阵的结构特点以及导向矢量Vandermonde矩阵与协方差Toeplitz矩阵的矩阵特征,通过重构阵列数据接收模型,实现阵列孔径的拓展,可在布阵空间不变的条件下显著提升阵列的测向精度。仿真结果表明,这种基于协方差数据重构的DOA方法实用有效,可作为传统DOA技术的前处理手段,提升算法性能及处理增益。展开更多
文摘针对相对重力观测过程中可能受到环境等因素影响而出现高频信号和局部异常的情况,以2021年漾濞6.4级地震前重力变化为例,通过时空平滑约束重构重力变化数据,对比重构前后重力变化情况。基于球坐标系下六面体模型模拟场源体介质,反演场源视密度变化,分析场源区介质密度演化特征。结果显示:观测数据经过时空平滑重构后,在不改变总体变化趋势的情况下,标准差由17.86×10-8 m/s 2降到8.99×10-8 m/s 2,变化值区间从(-74.20~66.28)×10-8 m/s 2降到(-21.79~27.70)×10-8 m/s 2,数据离散程度得到有效压缩,并能压制高频信号和局部噪声,孕震区域内重力变化时空演化趋势更加连续,便于异常特征的识别。场源区视密度变化显示有一个明显的NW-SE向物质迁移过程,在经过震中位置后逐渐收缩,在震中位置形成一个“孤岛”形态。孕震过程中正负变化分界线从SW-NE向转为NW-SE向,在分界线与构造走向一致后随即发震。
文摘在传统测向方法中,测向精度正比于阵列孔径,因此布阵空间与测向精度的矛盾性成为电子侦察系统在无人机等平台应用的主要工程约束之一。为实现空间受限下的高精度测向,提出一种通过协方差矩阵重构阵列接收数据的波达方向(Direction of Arrival,DOA)方法。结合均匀线阵的结构特点以及导向矢量Vandermonde矩阵与协方差Toeplitz矩阵的矩阵特征,通过重构阵列数据接收模型,实现阵列孔径的拓展,可在布阵空间不变的条件下显著提升阵列的测向精度。仿真结果表明,这种基于协方差数据重构的DOA方法实用有效,可作为传统DOA技术的前处理手段,提升算法性能及处理增益。