经典低阶频率响应模型可快速计算各项频率指标,但由于高比例新能源系统扰动类型多样,运行方式复杂多变,难以准确获取系统参数和扰动功率大小,同时模型本身线性化会引起较大误差,导致频率预测值和实际值存在较大差异。为使频率响应模型...经典低阶频率响应模型可快速计算各项频率指标,但由于高比例新能源系统扰动类型多样,运行方式复杂多变,难以准确获取系统参数和扰动功率大小,同时模型本身线性化会引起较大误差,导致频率预测值和实际值存在较大差异。为使频率响应模型适应实际应用场景中高精度的要求,该文提出了模型-数据融合驱动的频率稳定智能增强判别方法(model-data driven intelligent enhanced method for frequency stability discrimination,MD-IEFSD),利用扰动初期频率响应数据对模型关键参数进行辨识,建立结合卷积神经网络和注意力机制的CNN-Attention频率参数预测模型,构建了融合参数预测误差和频率响应曲线预测误差的损失函数,引入了参数的敏感性和学习速率的分析,实现了频率稳定性的准确判别。最后以中国电科院万节点测试系统为算例,验证所提方法的可行性和有效性。展开更多
生态系统碳循环过程对水分响应的研究已成为全球变化关注的焦点问题之一。基于长白山温带针阔混交林与千烟洲亚热带人工针叶林观测站2003—2009年生长季的碳通量(NEE)和气象观测数据,综合考虑水分对光合、呼吸作用的影响,构建不同的NEE...生态系统碳循环过程对水分响应的研究已成为全球变化关注的焦点问题之一。基于长白山温带针阔混交林与千烟洲亚热带人工针叶林观测站2003—2009年生长季的碳通量(NEE)和气象观测数据,综合考虑水分对光合、呼吸作用的影响,构建不同的NEE模型,并应用模型数据融合方法优化模型参数、遴选最适模型,系统分析了水分因子对不同森林生态系统碳循环的影响。结果表明:(1)优化后的模型参数均能被NEE实测数据较好约束。长白山生长季的光合、呼吸参数值均高于千烟洲,未考虑空气饱和水汽压差(VPD)的模型高估了千烟洲温度敏感性参数(Q10)值、低估了千烟洲基础呼吸速率参数(BR)值;(2)仅考虑VPD对光合作用影响的模型是长白山生长季碳通量模拟的最优模型,但模拟精度提高不显著。不同模型间碳通量组分模拟结果差异较小;(3)考虑VPD和土壤含水量对光合、呼吸作用共同影响的模型是千烟洲生长季碳通量模拟的最优模型,并且显著提高了模拟精度。未考虑水分的模型在生长季高估了总生态系统生产力(GEP)总量2.0%(21.85 g C/m^2),同时更大幅度地高估了生态系统呼吸(RE)总量4.4%(38.02 g C/m^2),从而导致NEE总量低估于实测值7.8%(18.55 g C/m^2)。展开更多
文摘经典低阶频率响应模型可快速计算各项频率指标,但由于高比例新能源系统扰动类型多样,运行方式复杂多变,难以准确获取系统参数和扰动功率大小,同时模型本身线性化会引起较大误差,导致频率预测值和实际值存在较大差异。为使频率响应模型适应实际应用场景中高精度的要求,该文提出了模型-数据融合驱动的频率稳定智能增强判别方法(model-data driven intelligent enhanced method for frequency stability discrimination,MD-IEFSD),利用扰动初期频率响应数据对模型关键参数进行辨识,建立结合卷积神经网络和注意力机制的CNN-Attention频率参数预测模型,构建了融合参数预测误差和频率响应曲线预测误差的损失函数,引入了参数的敏感性和学习速率的分析,实现了频率稳定性的准确判别。最后以中国电科院万节点测试系统为算例,验证所提方法的可行性和有效性。
文摘生态系统碳循环过程对水分响应的研究已成为全球变化关注的焦点问题之一。基于长白山温带针阔混交林与千烟洲亚热带人工针叶林观测站2003—2009年生长季的碳通量(NEE)和气象观测数据,综合考虑水分对光合、呼吸作用的影响,构建不同的NEE模型,并应用模型数据融合方法优化模型参数、遴选最适模型,系统分析了水分因子对不同森林生态系统碳循环的影响。结果表明:(1)优化后的模型参数均能被NEE实测数据较好约束。长白山生长季的光合、呼吸参数值均高于千烟洲,未考虑空气饱和水汽压差(VPD)的模型高估了千烟洲温度敏感性参数(Q10)值、低估了千烟洲基础呼吸速率参数(BR)值;(2)仅考虑VPD对光合作用影响的模型是长白山生长季碳通量模拟的最优模型,但模拟精度提高不显著。不同模型间碳通量组分模拟结果差异较小;(3)考虑VPD和土壤含水量对光合、呼吸作用共同影响的模型是千烟洲生长季碳通量模拟的最优模型,并且显著提高了模拟精度。未考虑水分的模型在生长季高估了总生态系统生产力(GEP)总量2.0%(21.85 g C/m^2),同时更大幅度地高估了生态系统呼吸(RE)总量4.4%(38.02 g C/m^2),从而导致NEE总量低估于实测值7.8%(18.55 g C/m^2)。